Resolving gas-phase metallicity gradients of 0.1 < z < 0.8 galaxies

David Carton

CRAL, Lyon Leiden Observatory, NL

PNCG 2017 Lyon, 17/11/17

Thanks

Jarle Brinchmann, Thierry Contini, **Benoît Epinat**, Hayley Finley, **Johan Richard**, Vera Patrício, Joop Schaye, Themiya Nanayakkara, Peter Weilbacher, Lutz Wisotzki

& The MUSE-GTO team

(Gas-phase) Metallicity gradients

Metals built up from successive stellar generations

Galaxy centres older and metal-rich *a.k.a. "Inside-out growth"*

Negative metallicity gradient

Metallicity traces gas flows

Gradients are modified by:

• Accretion of fresh gas - Dilution

Galactic winds

- Transport / removal of metal rich gas
- Galaxy-galaxy interactions
 Radial mixing

Metallicity gradient evolution

Metallicity gradient evolution

What causes positive gradients?

Metallicity gradient evolution?

Necessary to model PSF effects

Metallicity is measured from optical emission lines

But MUSE data is marginally resolved

- PSF heavily distorts / blurs the observed metallicity gradient
- We must forward model the observations

Model described: <u>Carton+ 2017</u> Results shown: <u>Carton+ (subm.)</u>

MUSE gradients (0.1 < z < 0.8)

No trend with SF intensity

No trend with SF intensity

Interpretation

We do not find as many inverted metallicity gradients as other (z>0.6) studies

- Redshift evolution ?
 - Cold flows not as common?
 - Secular evolution ? (Next slide)

Metallicity gradient does not correlate with intensity of star formation

 Perhaps global (integrated) SFRs are a poor indicator of gas accretion / interaction ?

A speculative trend with size

Summary

(0.1 < z < 0.8) have negative metallicity gradients on average, but with considerable scatter.

 However, there are no large galaxies (r_d>3kpc) with inverted (positive) gradients

Limitations

Current sample (84 galaxies) is small and <u>incomplete</u> :(

- But more MUSE data will help :)

Our current emission line modelling is too simplistic

- Non-parametric models can be computationally expensive!

Extra Bits

Forward Model

Example Fit

Testing the model

Convolve NGC628 to mimic high-z observations Seeing Ηβ

Poorly resolved

Marginally resolved

Model works for <u>well behaved</u> galaxies

But not for poorly behaved galaxies e.g. NGC4980

