

Deep-learning for galaxy morphology and evolution

A review of on-going projects - questions / ideas

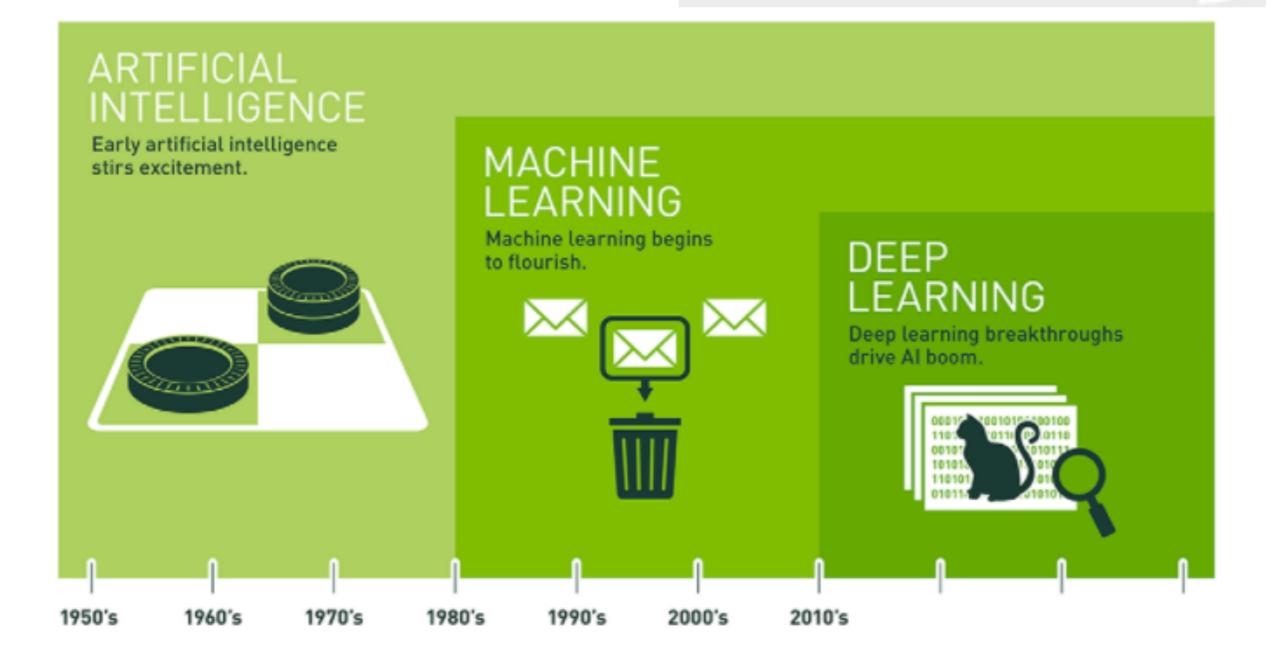
Marc Huertas-Company

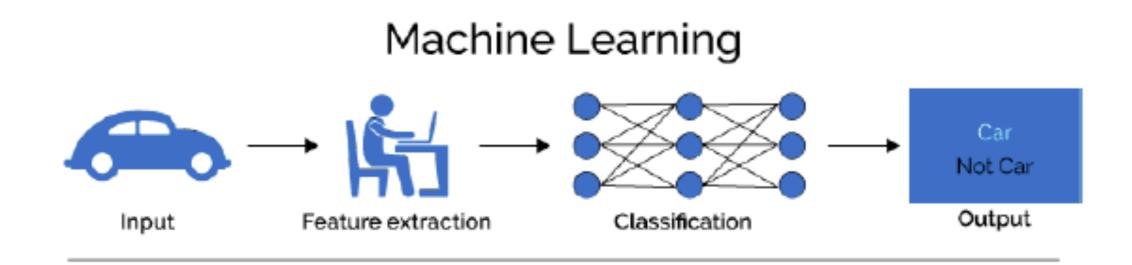
D. Koo, J. Primack, H. Dominguez-Sanchez, M. Bernardi, S. Faber, F. Caro, D. Tuccillo, C. Lee, B. Margalef-Bentabol, E. Decencière, S. Velasco-Forero, G. Cabrera-Vives....

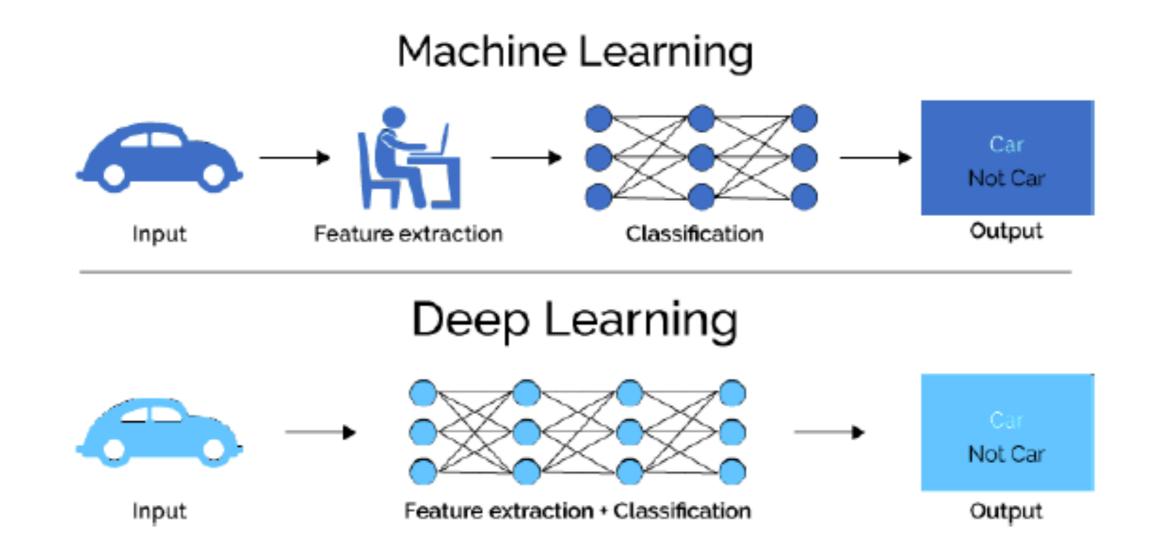
Journées PNCG, November 17 2017

GOLDEN AGE FOR ARTIFICIAL INTELLIGENCE with the generalization of deep-learning since 2012

(Nature, 01/2016) "Deep learning is killing







The 3 "phases" of deep-learning:

skepticism, acceptance, frustration

GOLDEN AGE FOR ARTIFICIAL INTELLIGENCE ("Artificial Intelligence") with the generalization of deep-learning since 2012

QUESTIONS WE ARE FOCUSING ON :

How AI (i.e. deep-learning) can be used to understand galaxy formation?

Can we do things with AI that we could not do before?

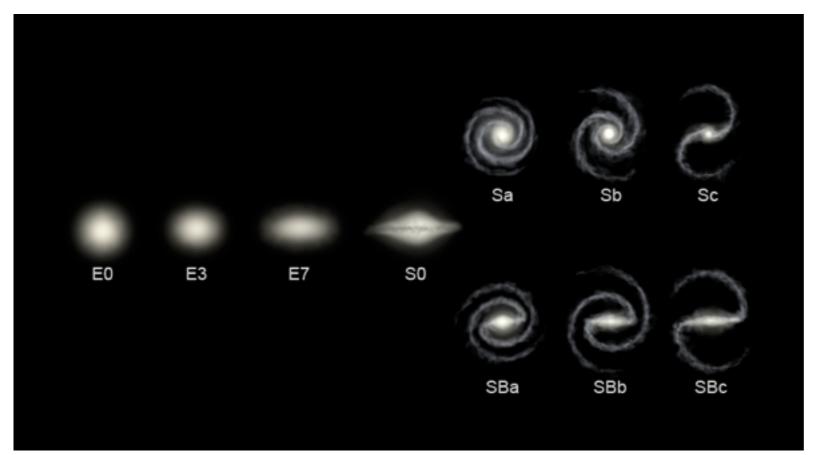
Can we learn something new about the physics of galaxies?

DL FOR FOR GALAXIES?

- GROUP #1: Time consuming tasks that humans do easily but classically challenging for computers classification of objects
- GROUP #2: Efficient and fast <u>quantitative</u> <u>measurements</u> on large amount of (multi-lambda) data [photoz's, sizes, ellipiticities]
- GROUP #3: Find hidden new observables in the data, - <u>Linking observations and theory</u>

• **GROUP #4**: Finding the unknown?

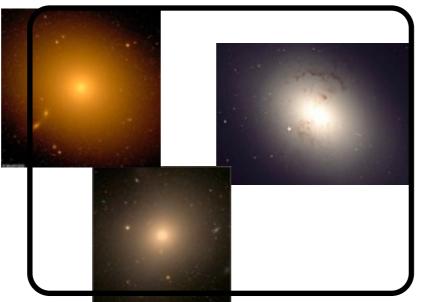
 GROUP #1: Time consuming tasks that humans do easily but classically challenging for computers classification of objects



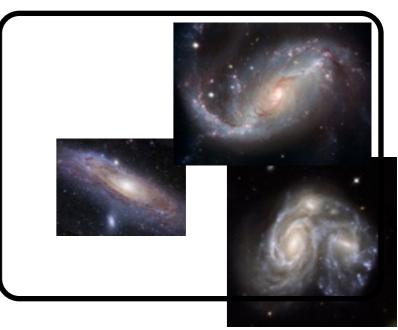
The Hubble Sequence

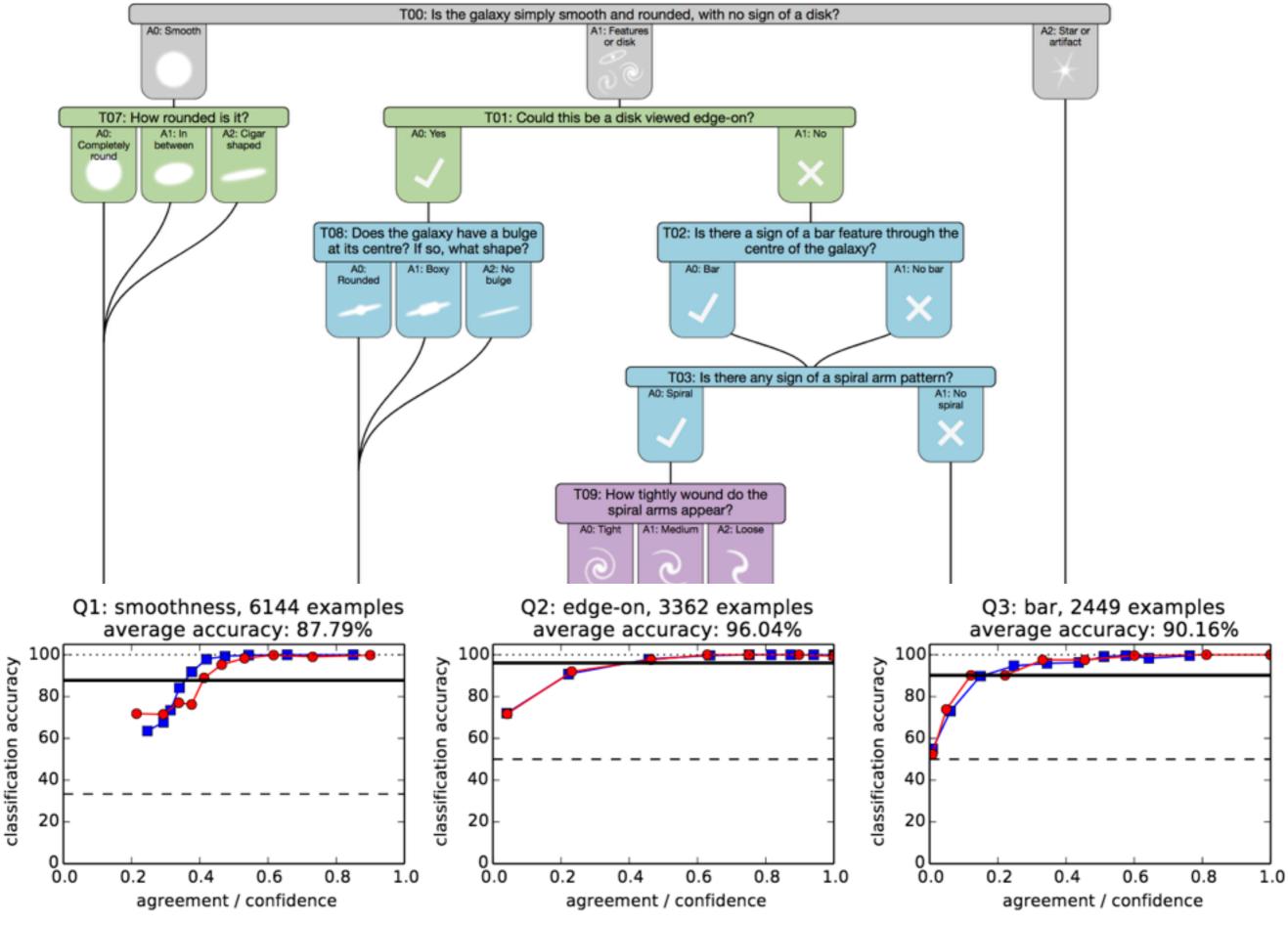
BOX I

"Objects in the same box experienced the same physics"



BOX II





Dieleman+15

HIGH-REDSHIFT MORPHOLOGIES (CANDELS)

0.0

0.0

0.3

0.3

0.4

0.4

2.9

PS

0.8

0.8

5.6

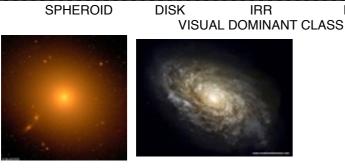
0.8

Unc

VISUAL

AUTOMATIC 75 3 Late-Type 87 25 Early-Type Early-Type Late-Type ā un nu lu nu nu lu nu nu lu nu nu lu nu nu l

SVMs



DISK

AUTOMATIC

Unc

PS

IRR

DISK

SPHEROID

0.2

0.5

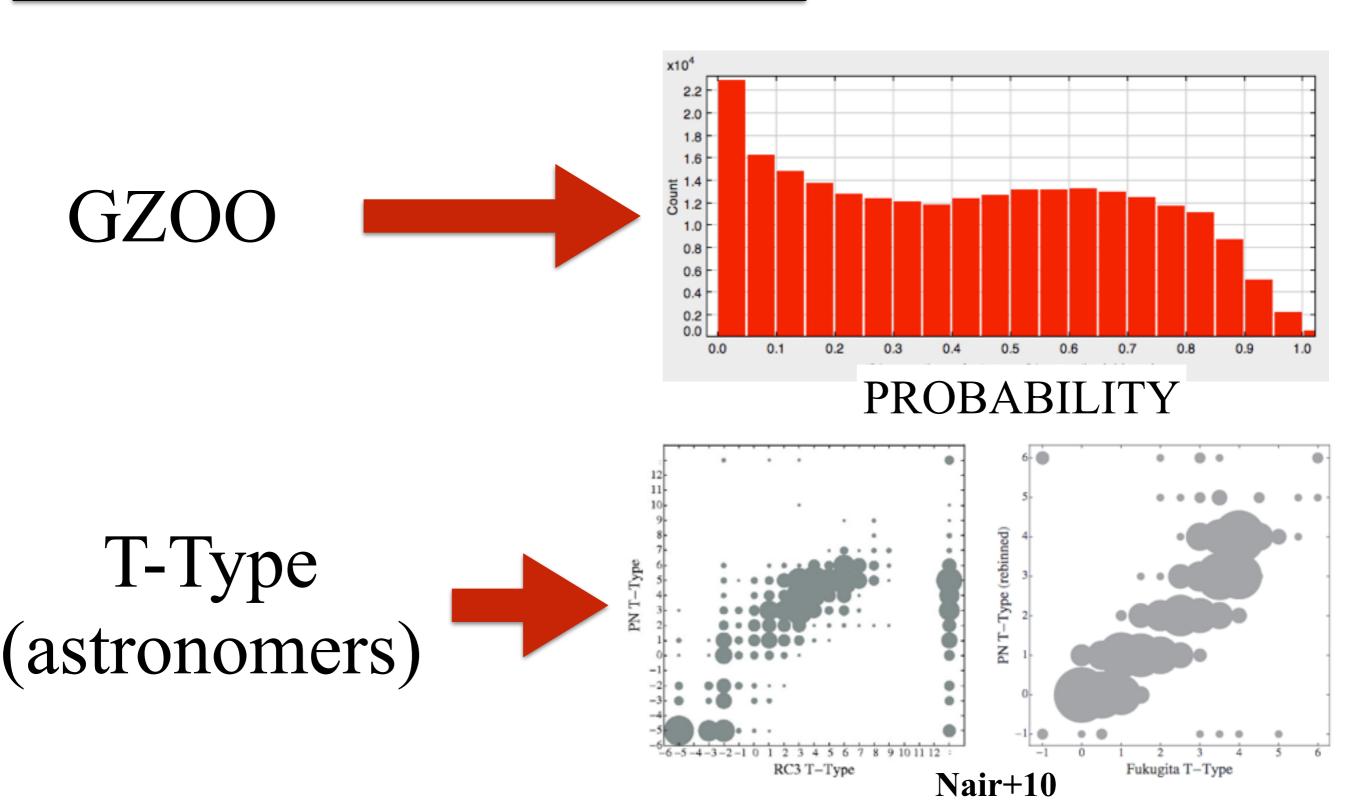
0.2

SPHEROID

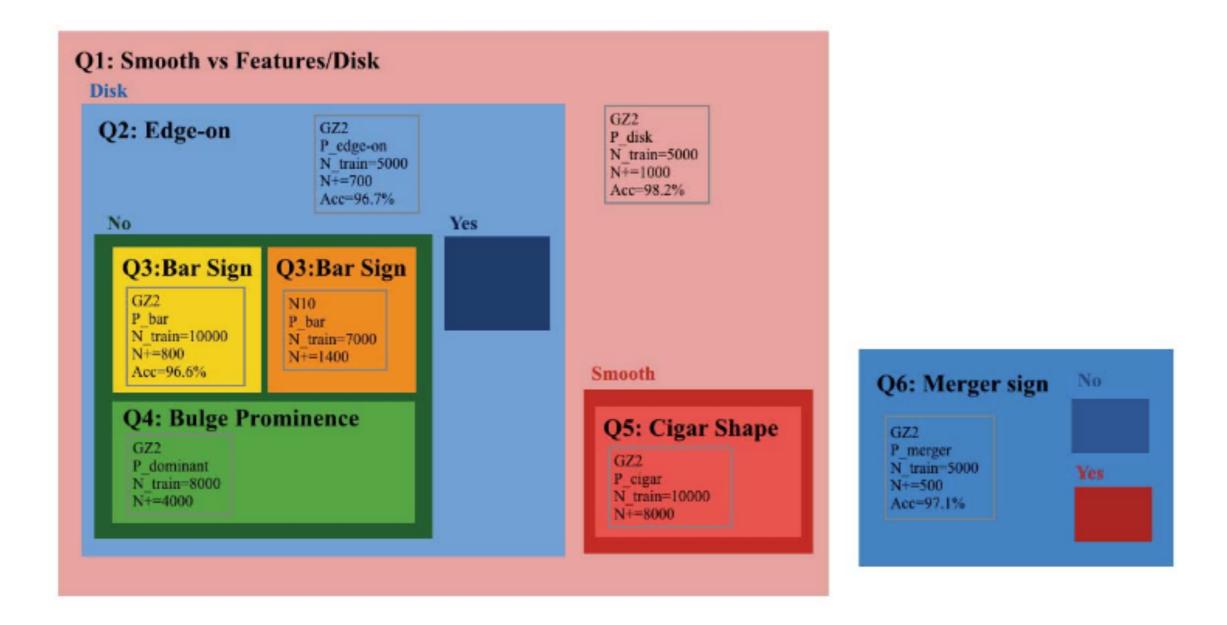
CNNs

MHC+15b

Can we improve human biases with machines?

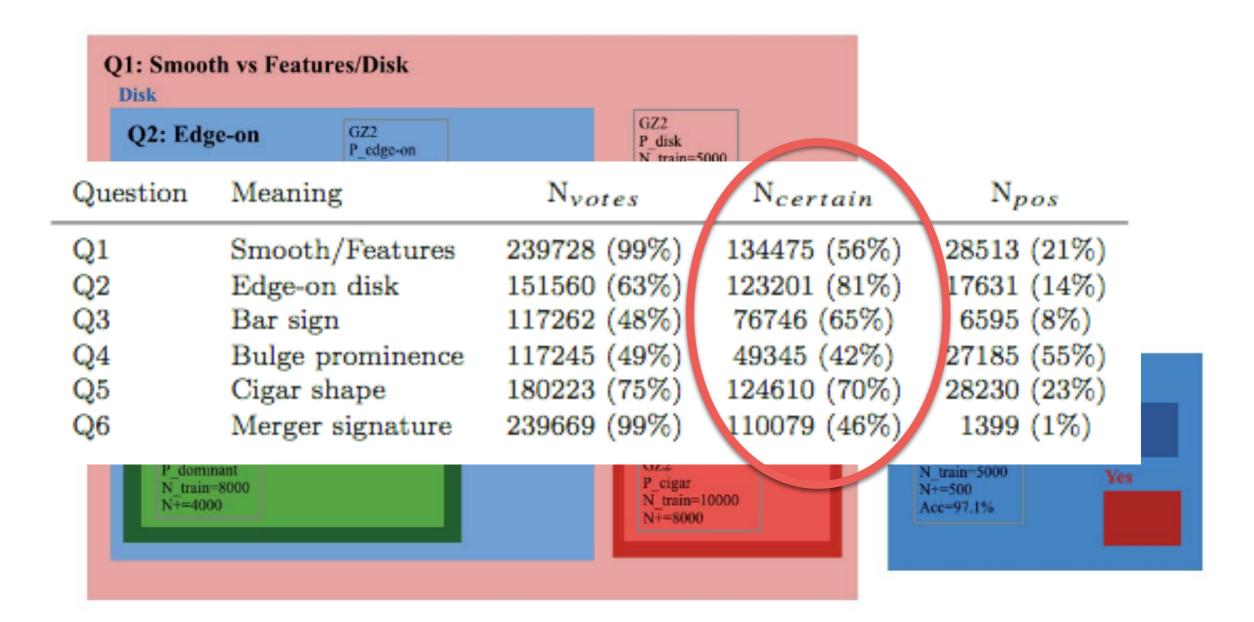


REVISITING THE SDSS MORPHOLOGY



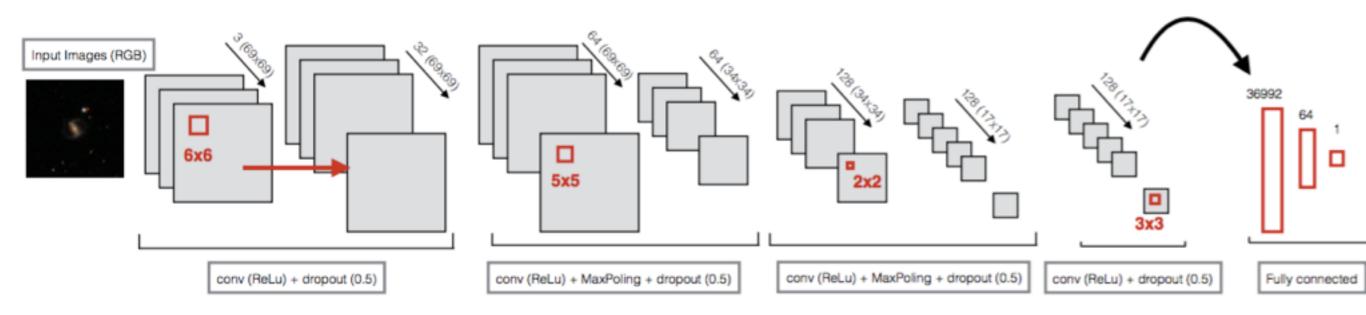
Select only "safe" classifications for training [N>5, P>0.7] Binary classification for each feature separately

REVISITING THE SDSS MORPHOLOGY

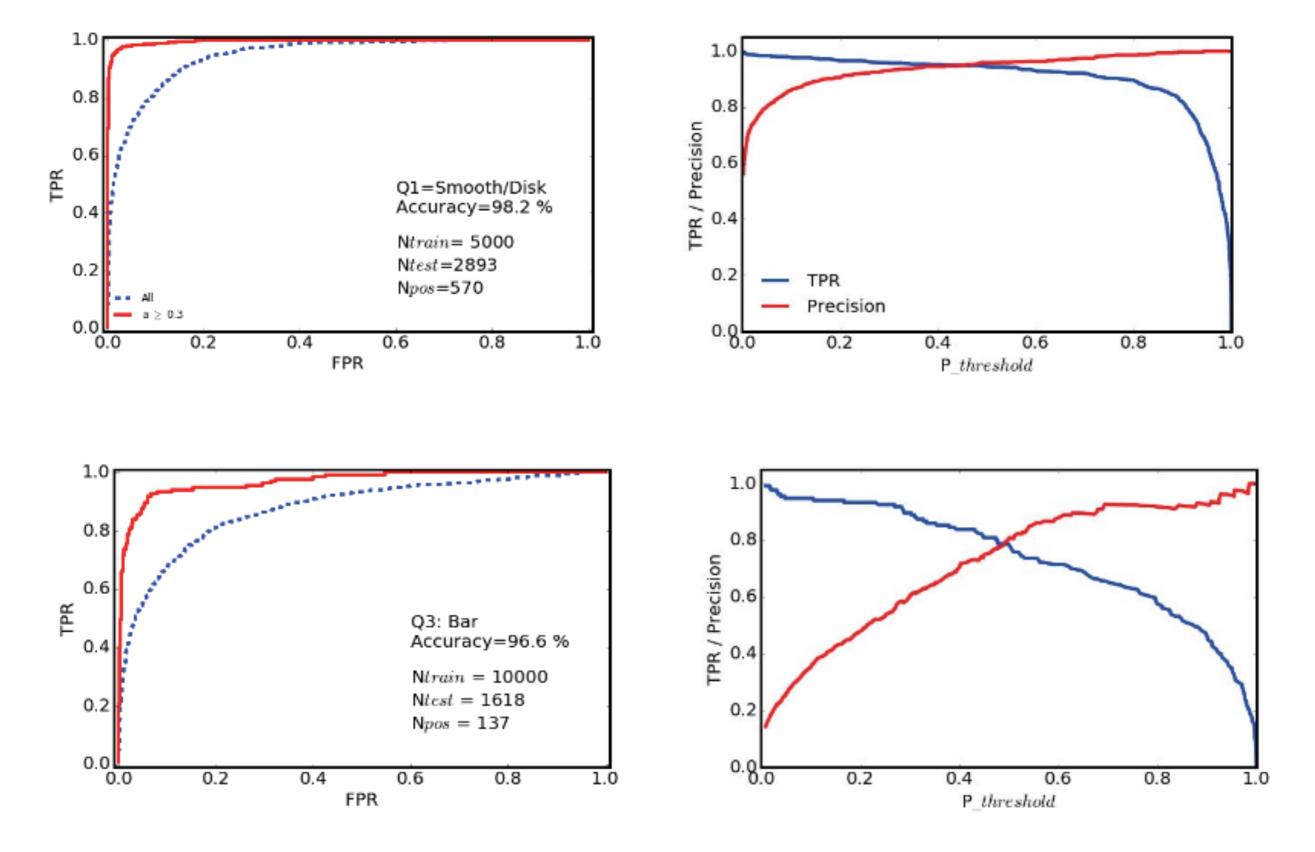


Select only "safe" classifications for training [N>5, P>0.7] Binary classification for each feature separately

VERY SIMPLE ARCHITECTURE

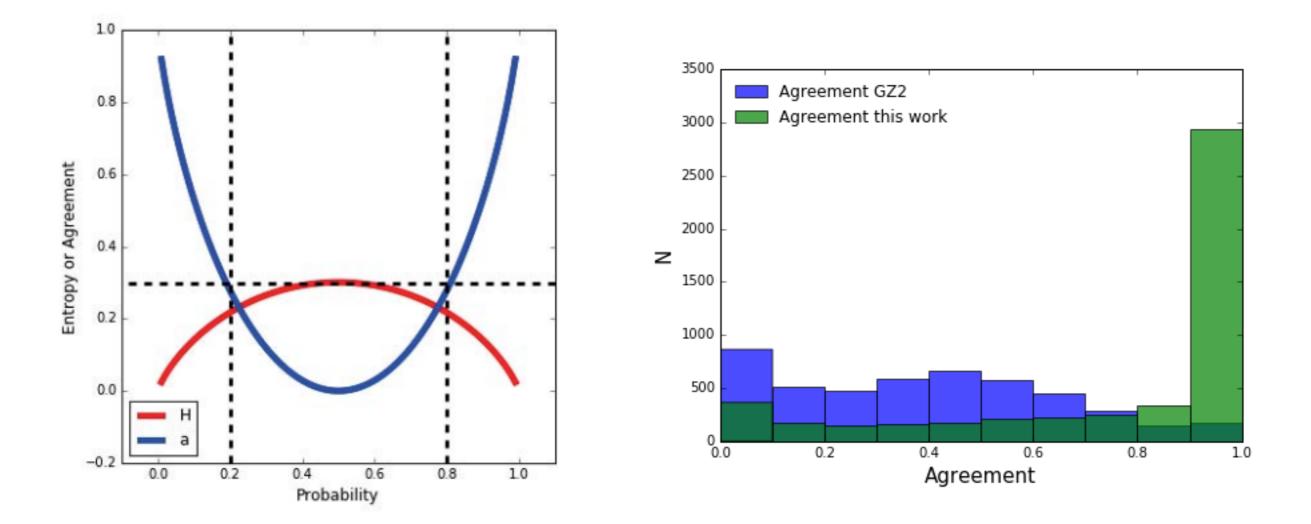


Dominguez-Sanchez, MHC+17a



Dominguez-Sanchez, MHC+17a

Entropy of classification



Dominguez-Sanchez, MHC+17a

PGZ2=0.67 PGZ2=0.73 PGZ2=0.78 PGZ2=0.34 PGZ2=0.72 PGZ2=0.44 PGZ2=0.28 PGZ2=0.51 PGZ2=0.74 PGZ2=0.57 PGZ2=0.59 PGZ2=0.57 PGZ2=0.62 PGZ2=0.67 PGZ2=0.54 **SECURE DISKS GALAXIES FOR DL** - UNCLEAR FOR PEOPLE Dominguez-Sanchez, MHC+17a

PGZ2=0.66

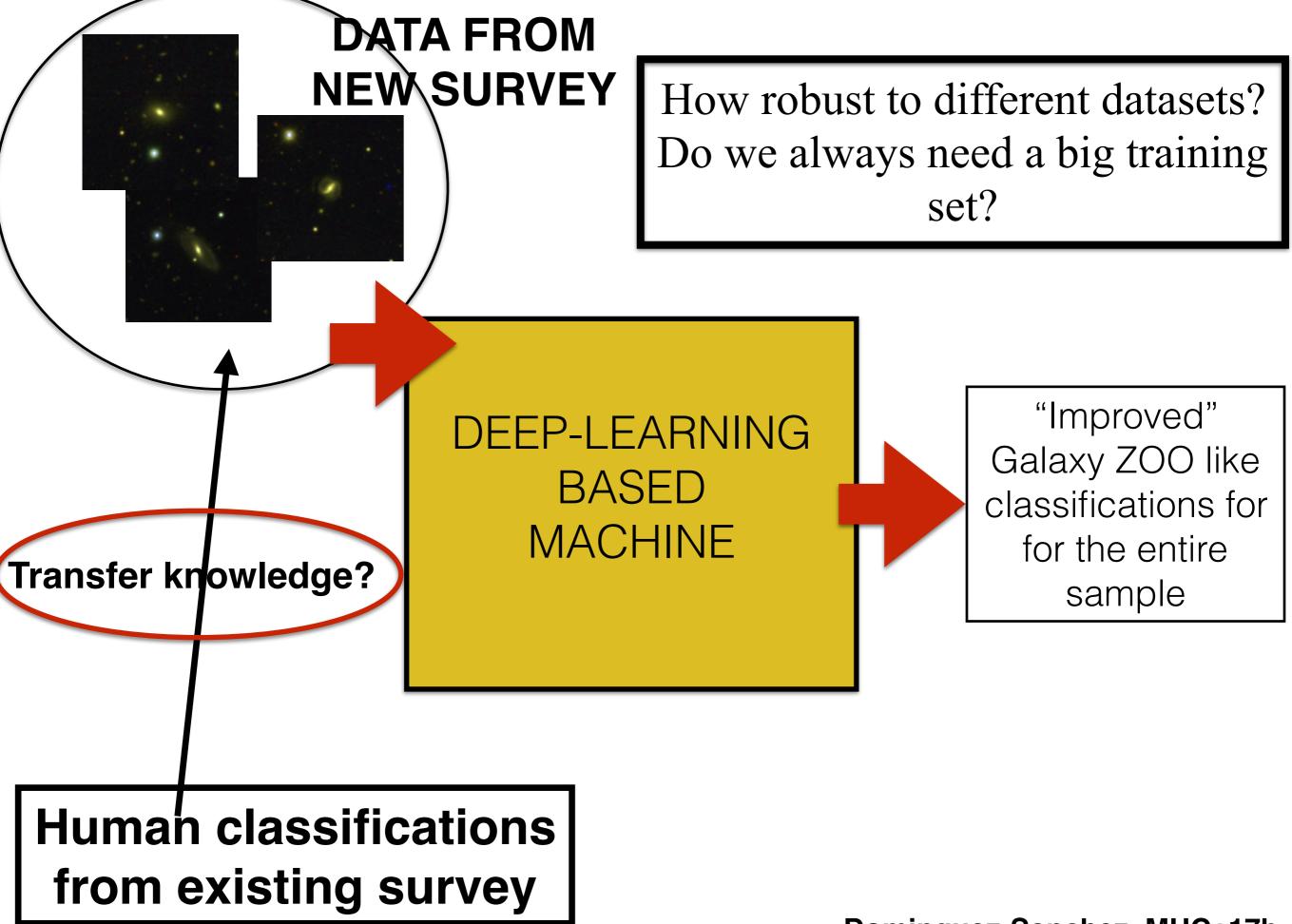
PGZ2=0.76

PGZ2=0.49

PGZ2=0.37

PGZ2=0.65

How robust to different datasets? Do we always need a big training set?



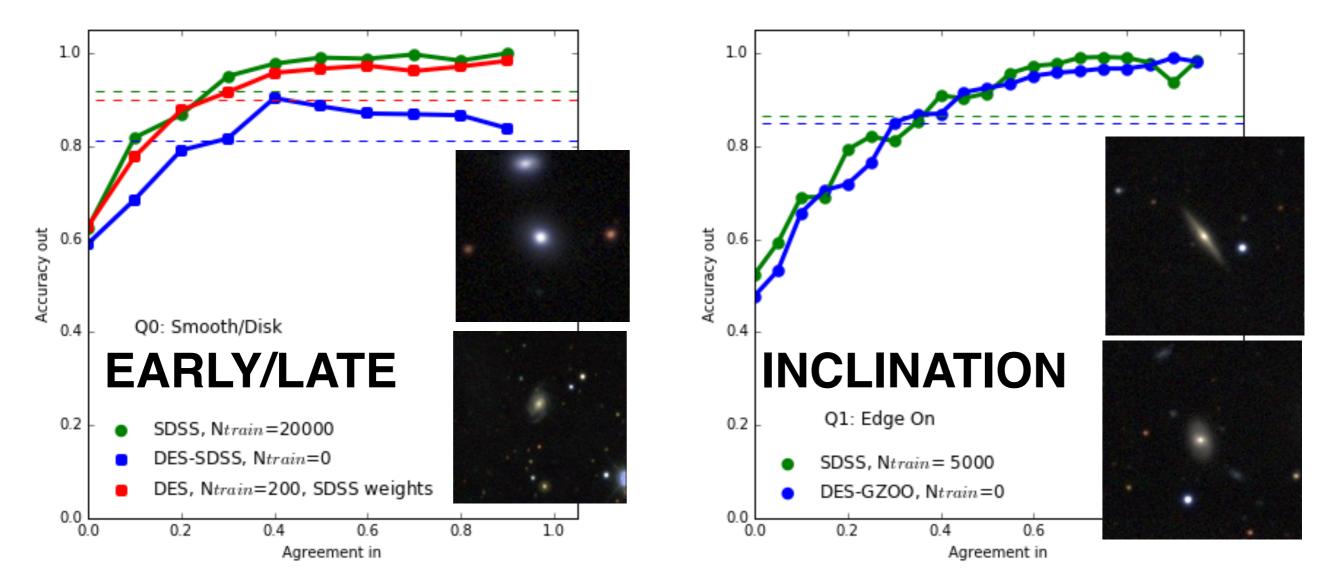
SDSS

DES

Dominguez-Sanchez, MHC+17b

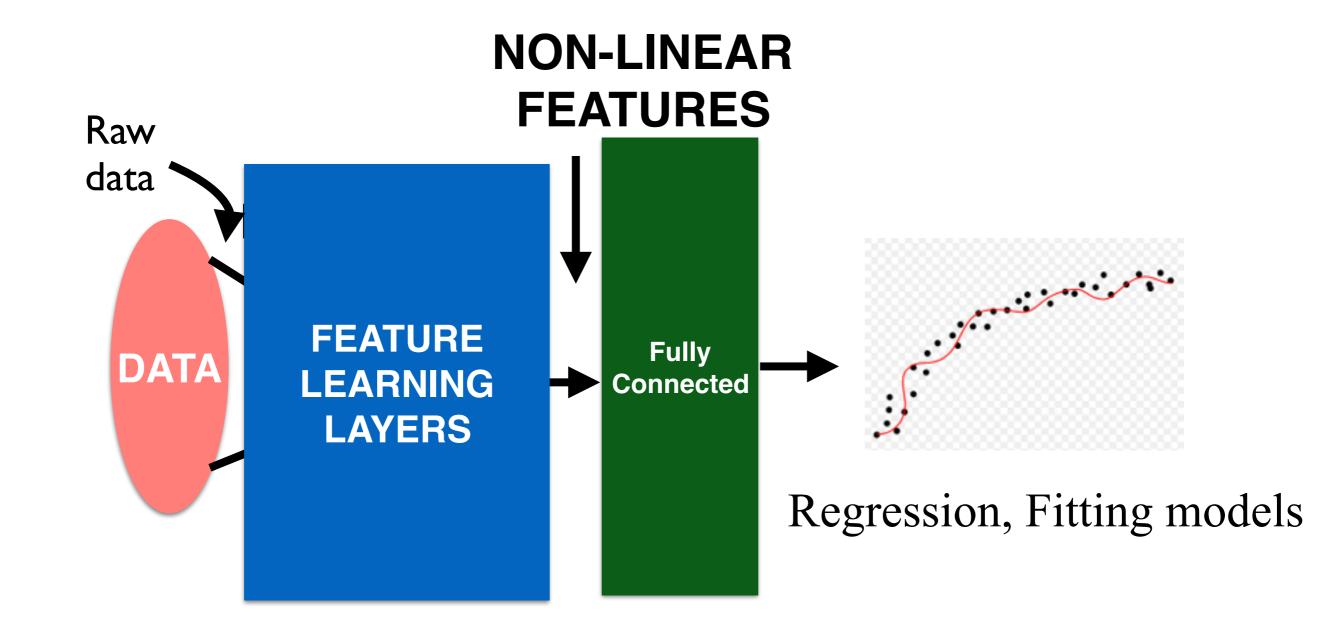
Knowledge transfer from SDSS to DES

DOMINGUEZ-SANCHEZ, HUERTAS-COMPANY, BERNARDI et al. 17b

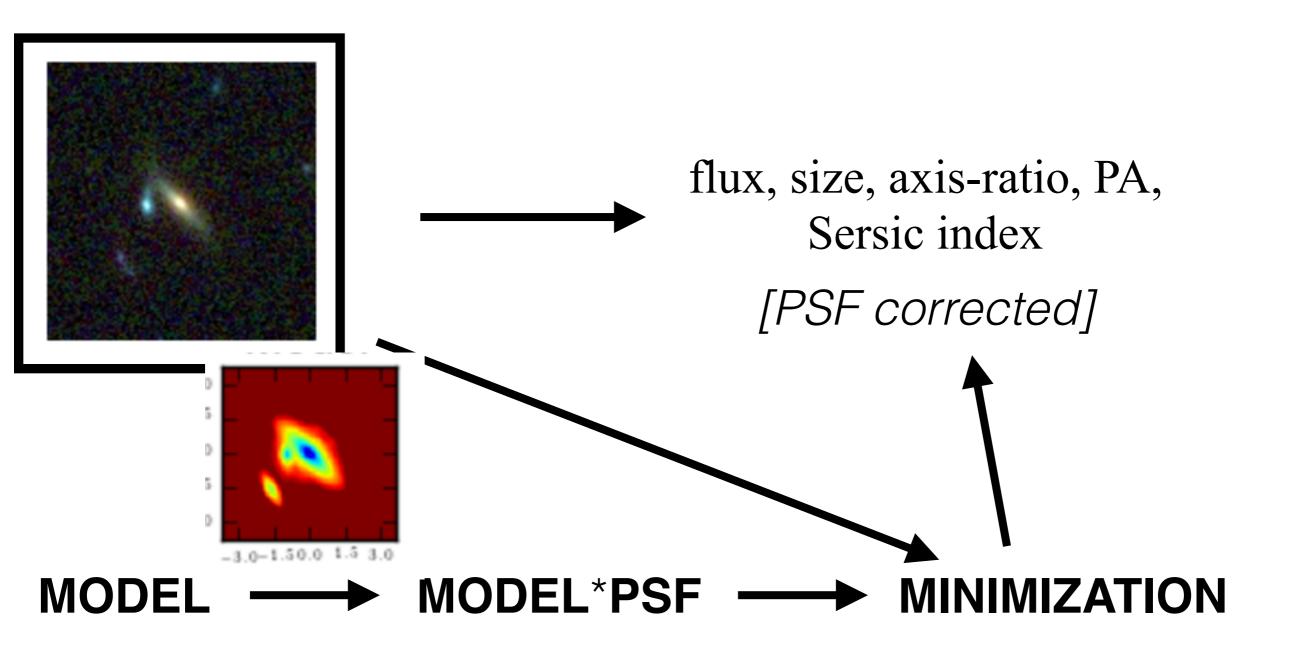


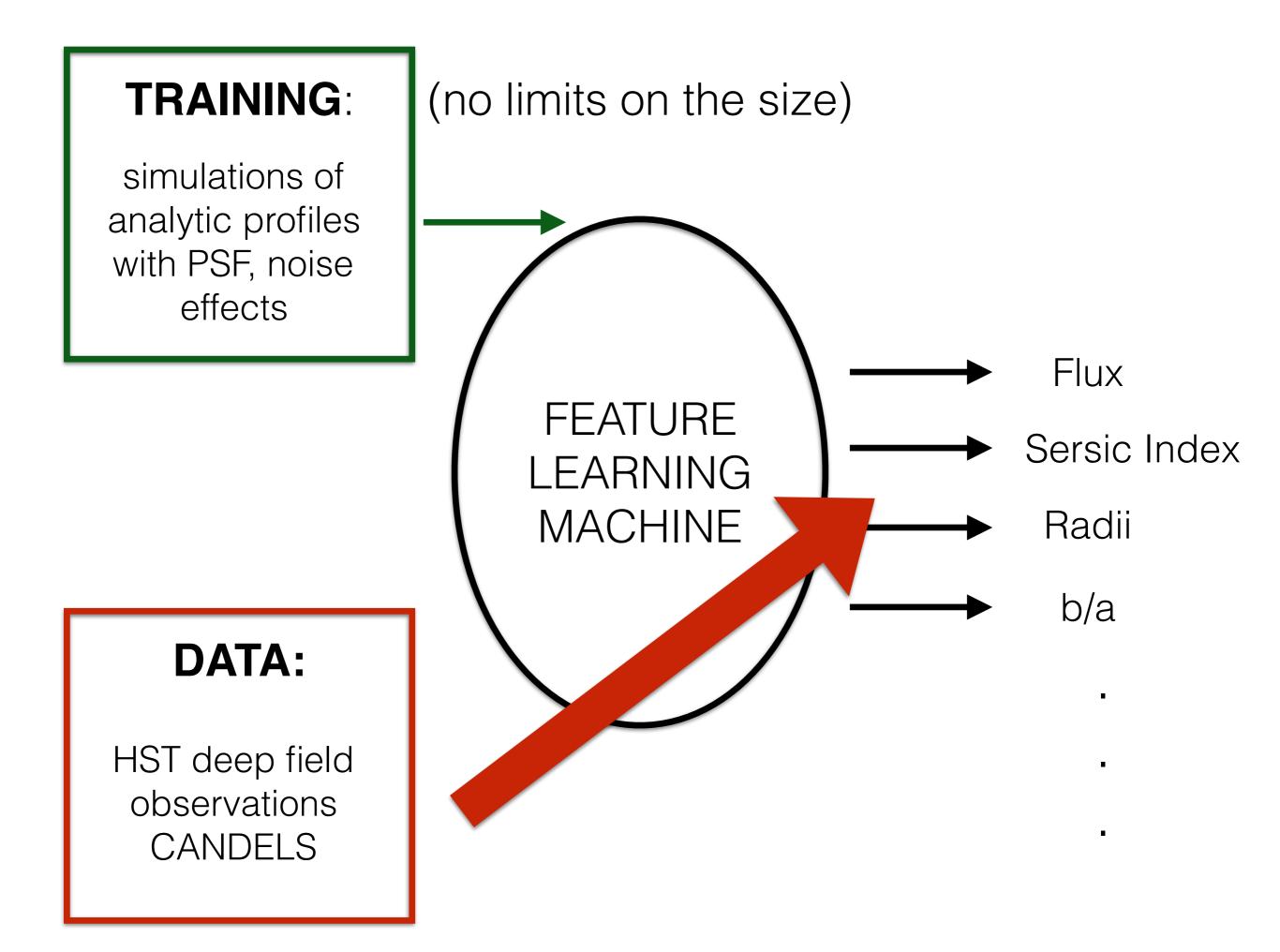
Only 200 (1%!) objects classified in DES are needed to reach an accuracy >90% if a machine trained on the SDSS is used

For some properties, i.e. EDGE-ON galaxies. No training at all is needed to go from SDSS to DES **GROUP #2:** Efficient and fast <u>quantitative measurements</u> on large amount of (multi-lambda) data [photoz's, sizes, ellipiticities]



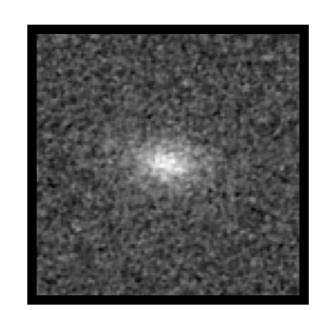
<u>MORPHOMETRICS</u>

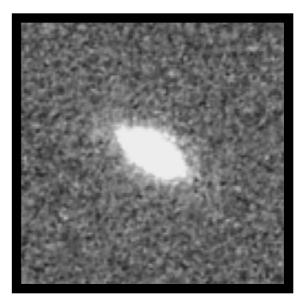


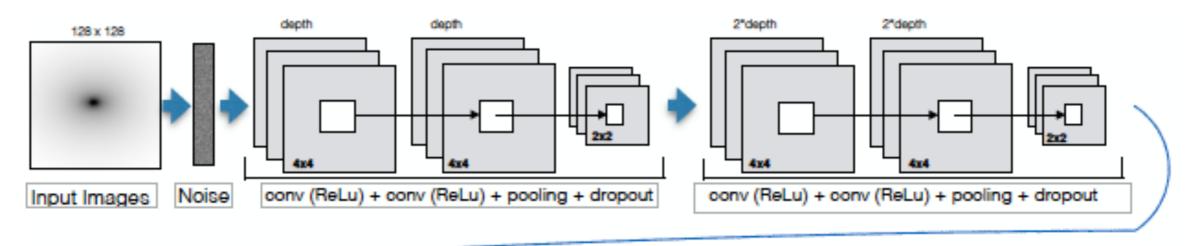


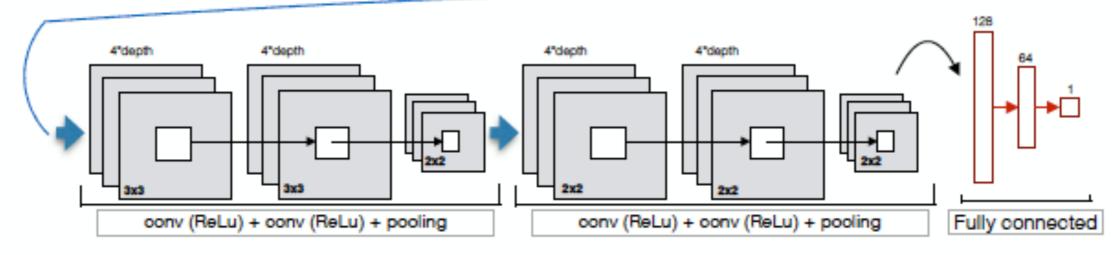
Standard analytic profiles

- 100.000-300.000 galaxies [<u>GALSIM</u>]
 - Real HST background added + PSF (F160)
 - Random distribution of parameters (uniform):
 - 18<Mag<24, 0<BT<1, <Nb<, Nd=1, 0.2<log(rb)<1.3,
 0.2<log(rd)<1.5, 0.05<eb<0.95, 0.05<ed<0.95, 0<PA<180
 - 64*64 stamps
 - FULLY IDEALISTIC -NO COMPANIONS NO IRREGULARS NO CLUMPY!



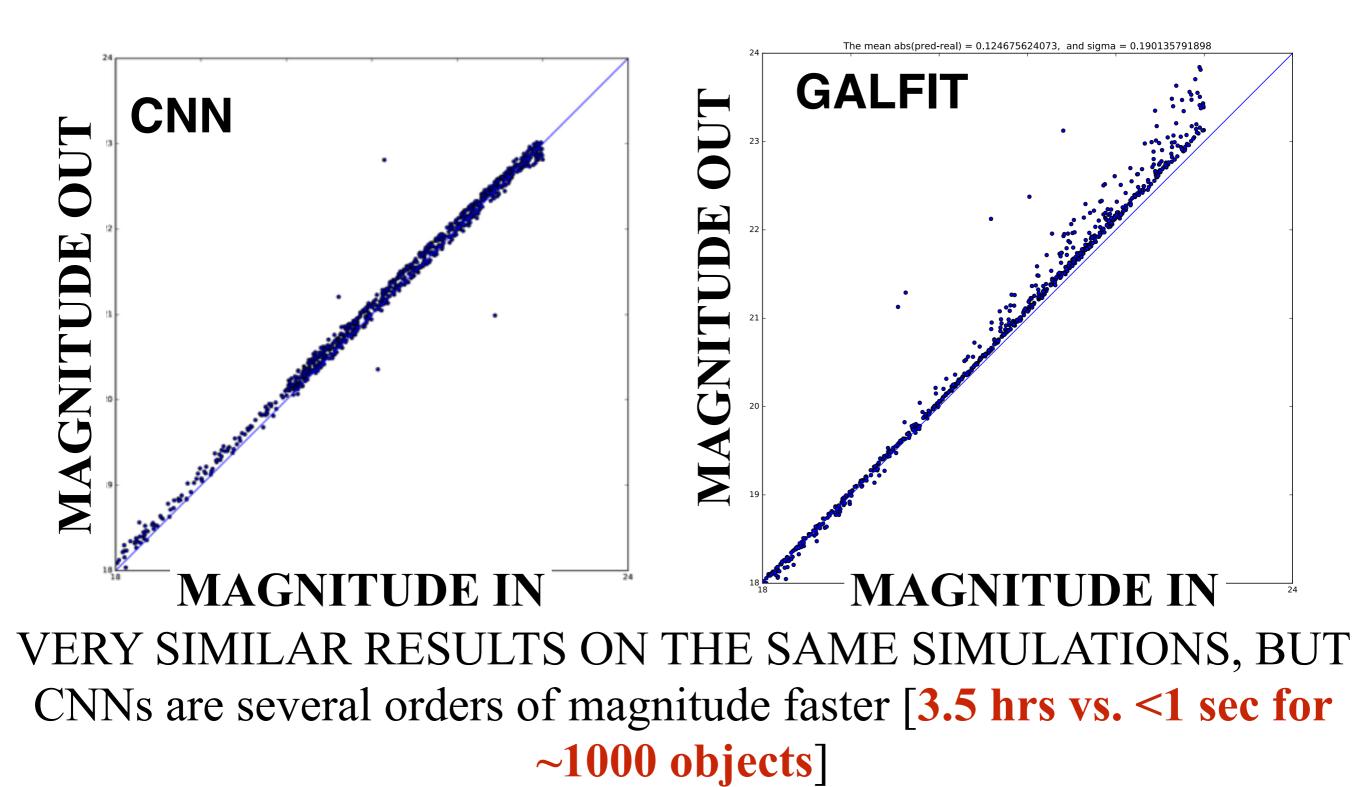




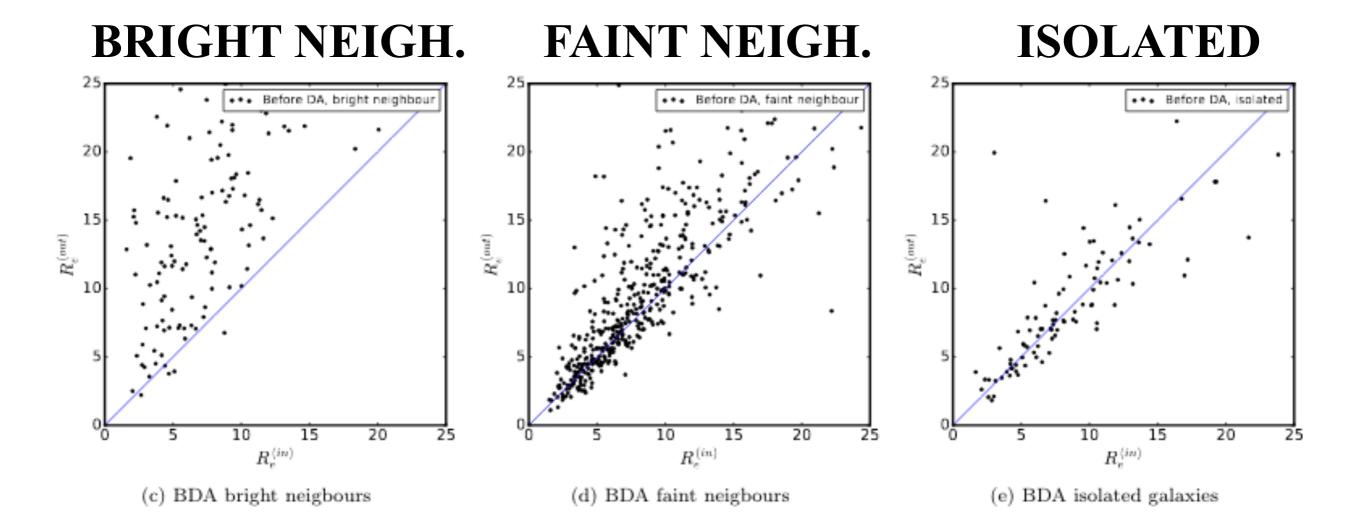


ON SIMULATIONS

TUCCILLO, HUERTAS-COMPANY et al. 17

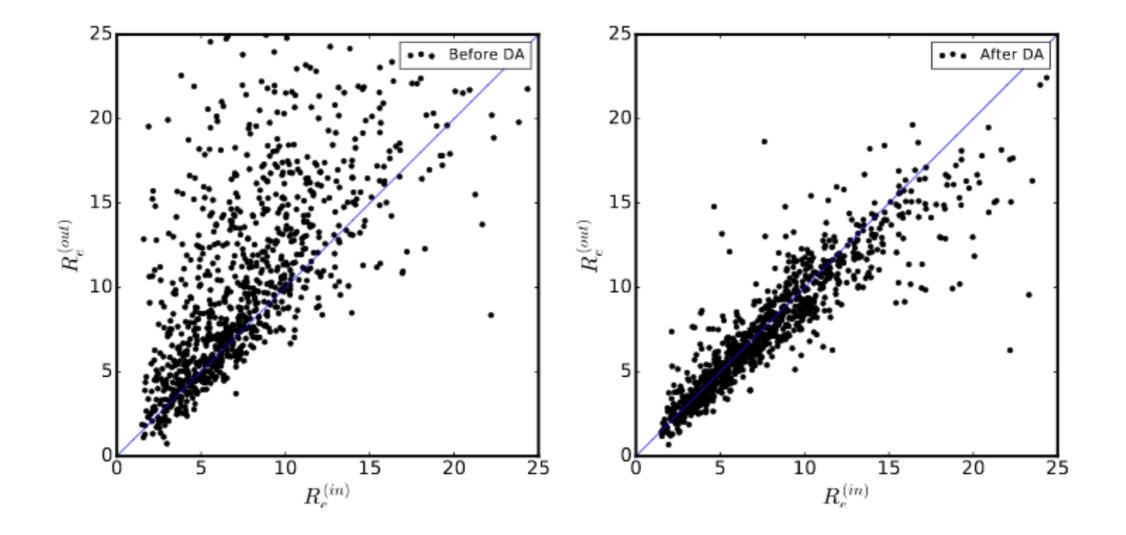


MORPHOMETRY OF REAL GALAXIES TRAINED ON ANALYTIC PROFILES



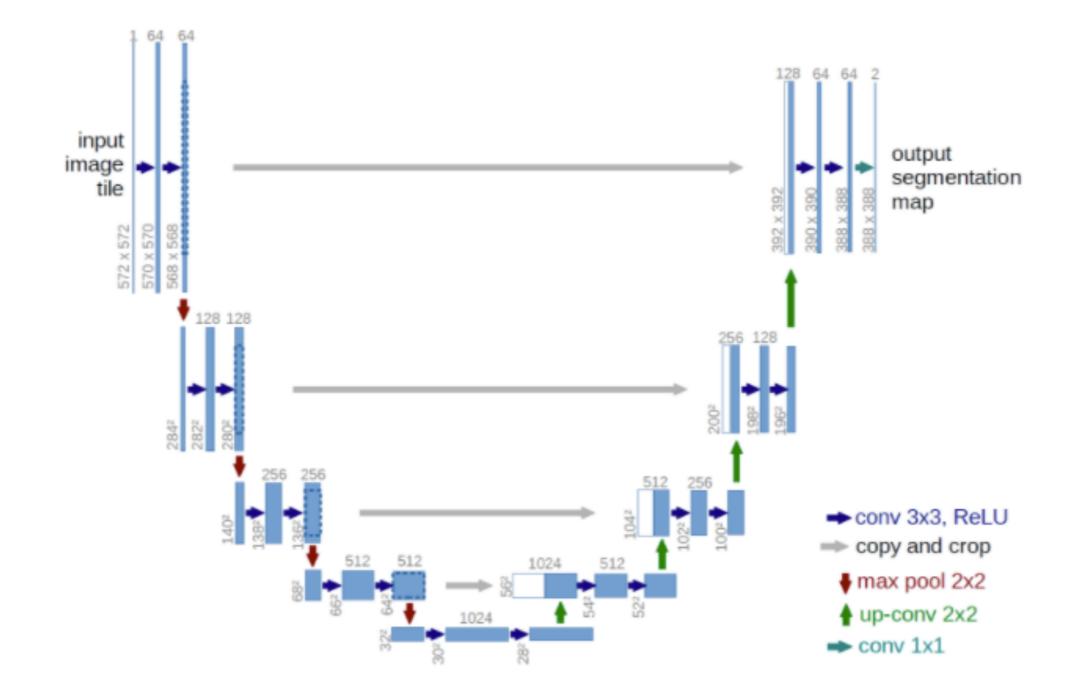
TUCCILLO, HUERTAS-COMPANY et al. 17

DOMAIN ADAPTATION: 0.1% OF "REAL" GALAXIES



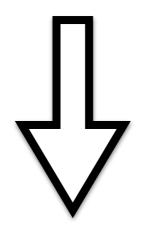
TUCCILLO, HUERTAS-COMPANY et al. 17

Coming soon: U-net for bulge/disc decompositions...

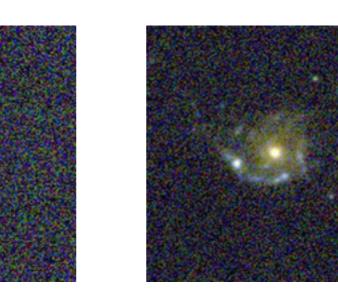


VELA hydrodynamic simulations Ceverino+15

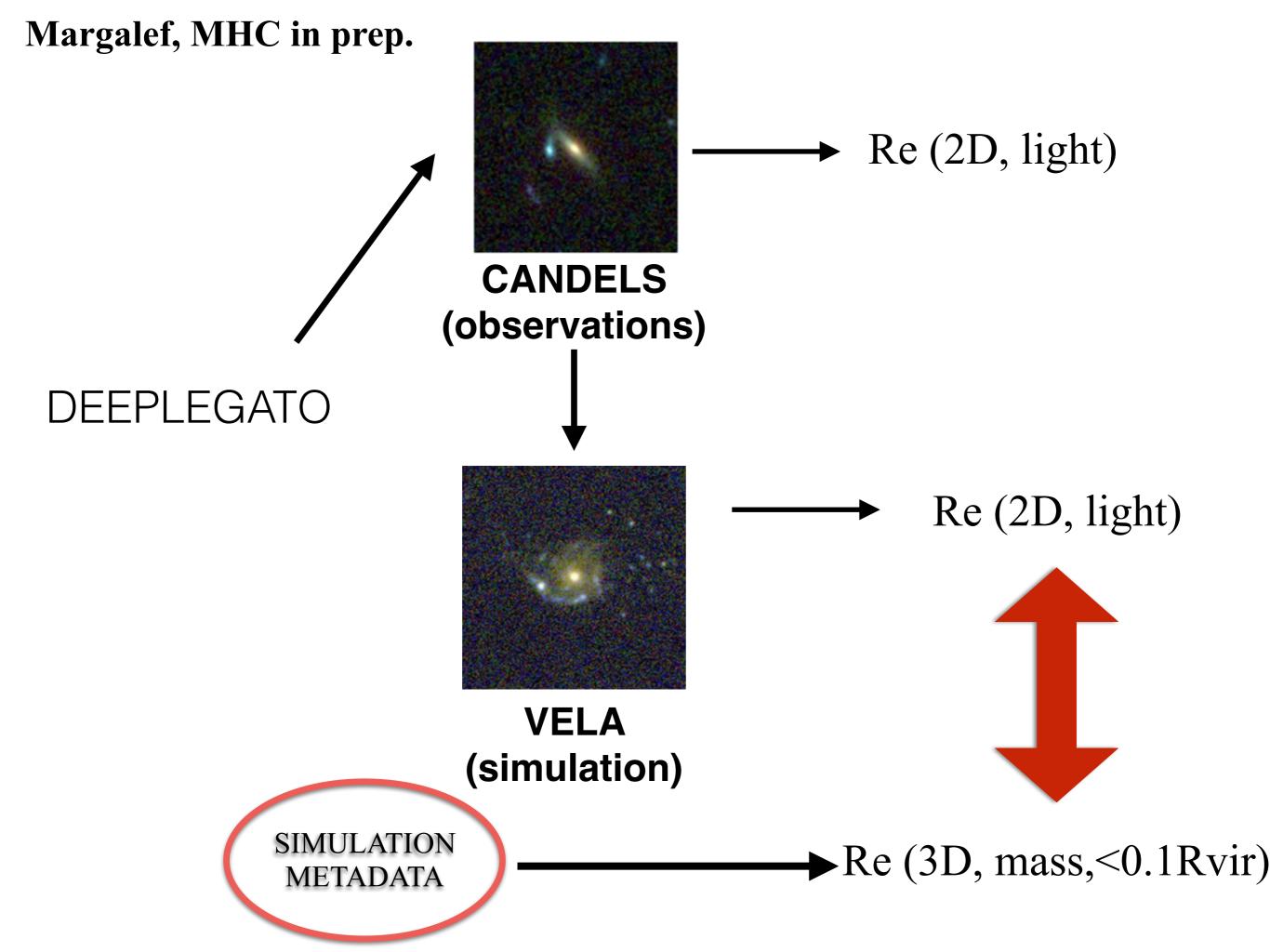
35 high res (~20pc) zoom-in simulations hydroART radiative and supernovae feedback stops at z=1 - Mh=10^11-2.10^12

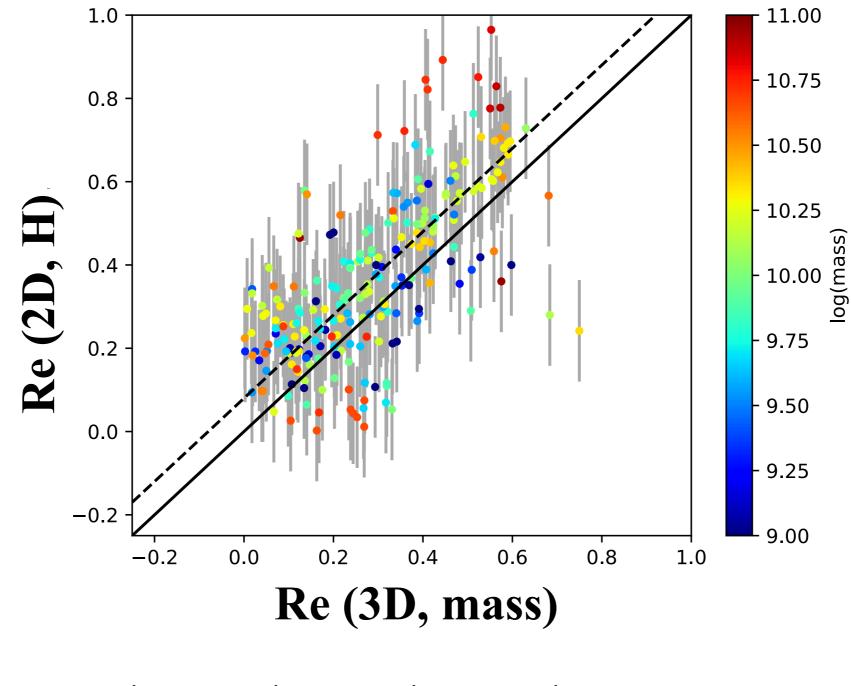


mock images [sunrise] Tstep ~ 200Myrs 10 projections HST like



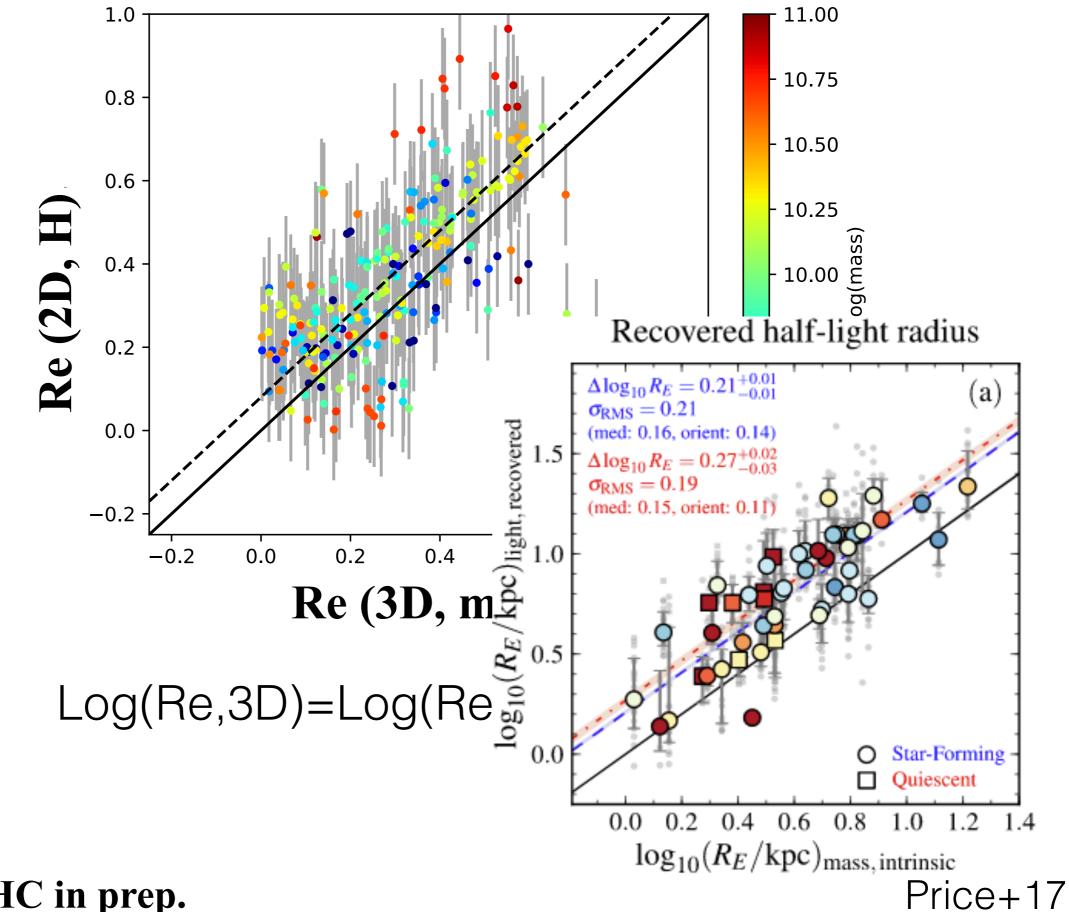
[G. Snyder, J. Lotz]



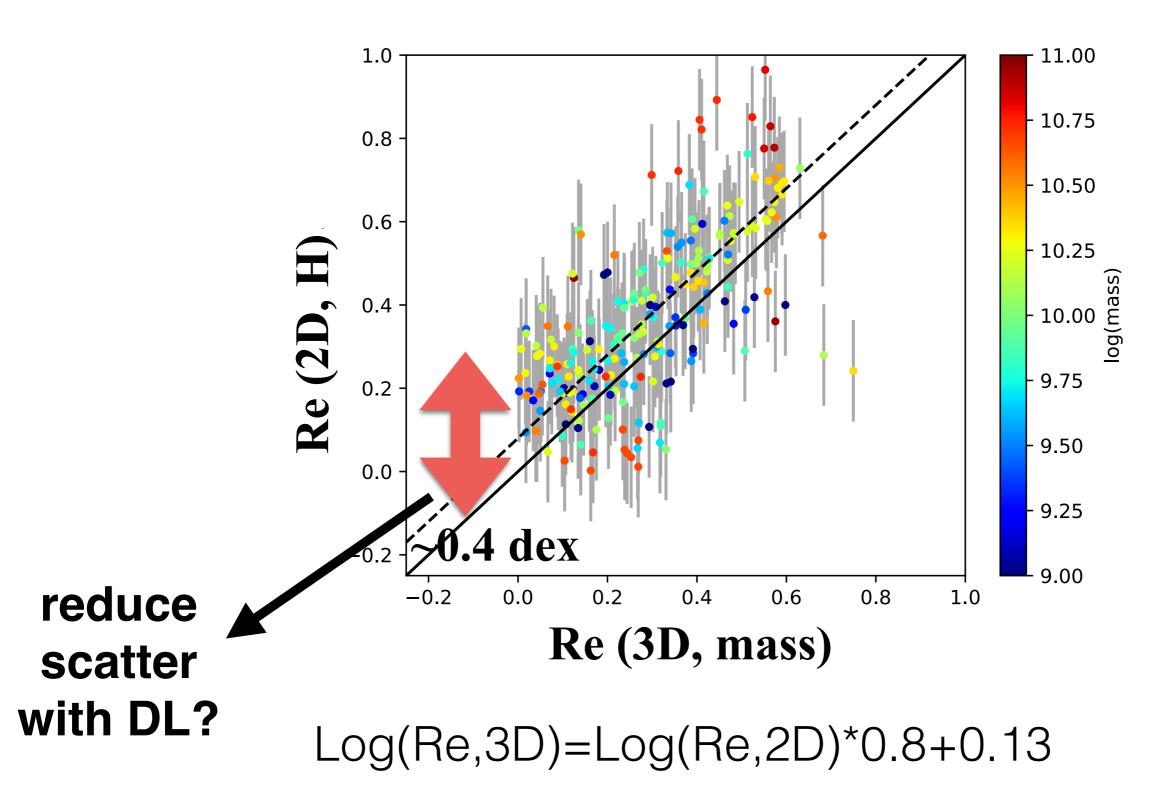


Log(Re,3D)=Log(Re,2D)*0.8+0.13

Margalef, MHC in prep.

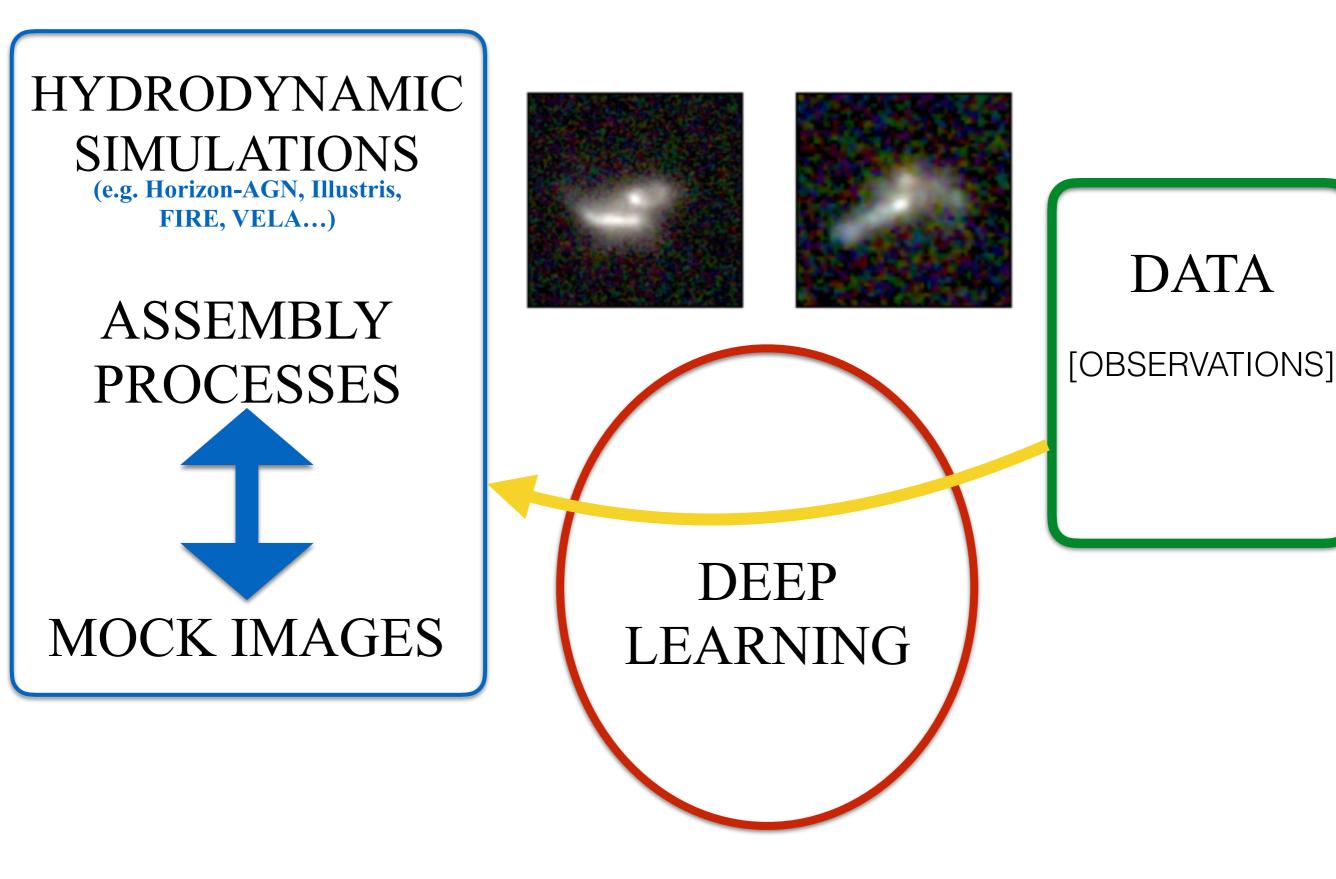


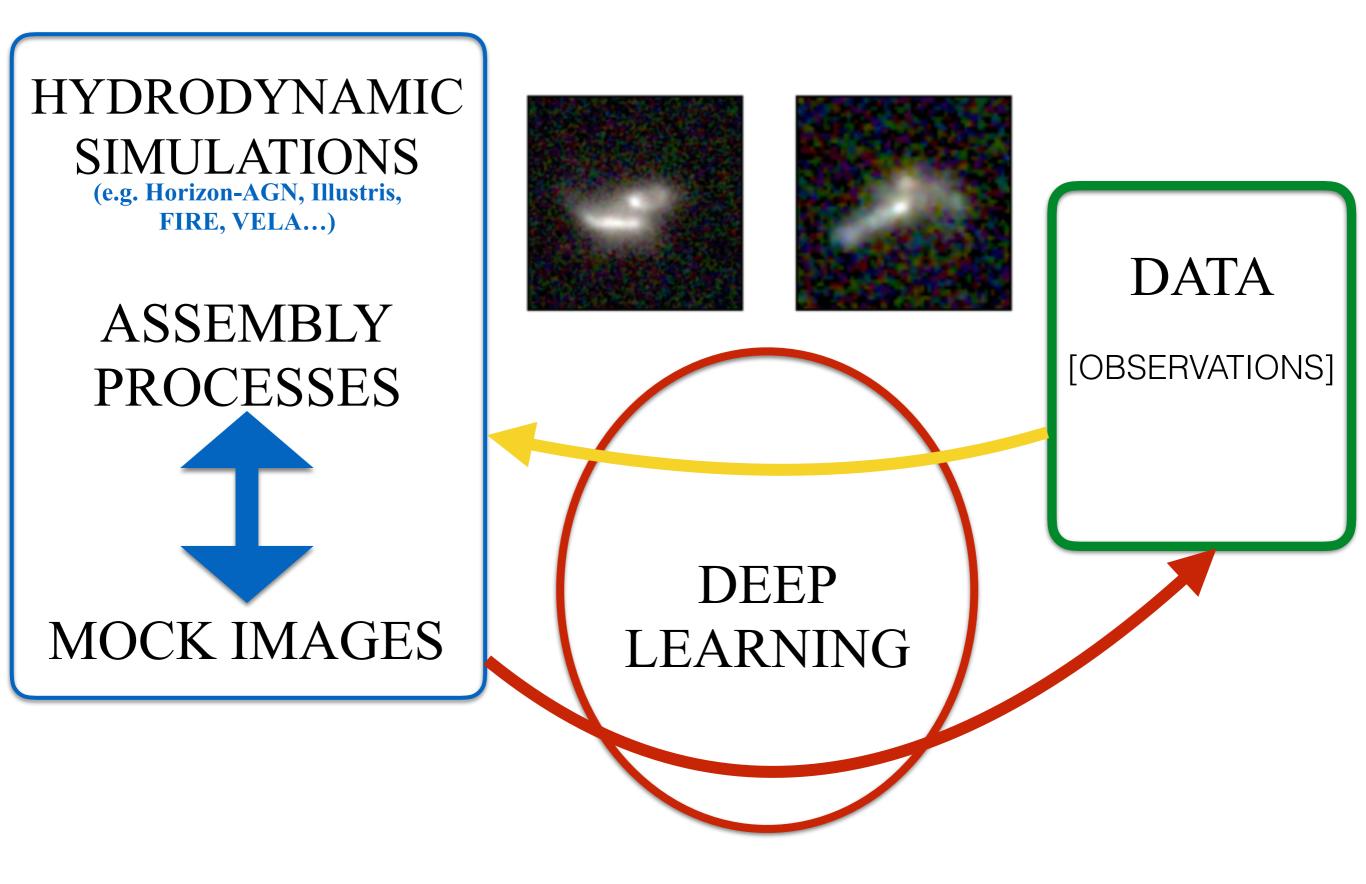
Margalef, MHC in prep.



Margalef, MHC in prep.

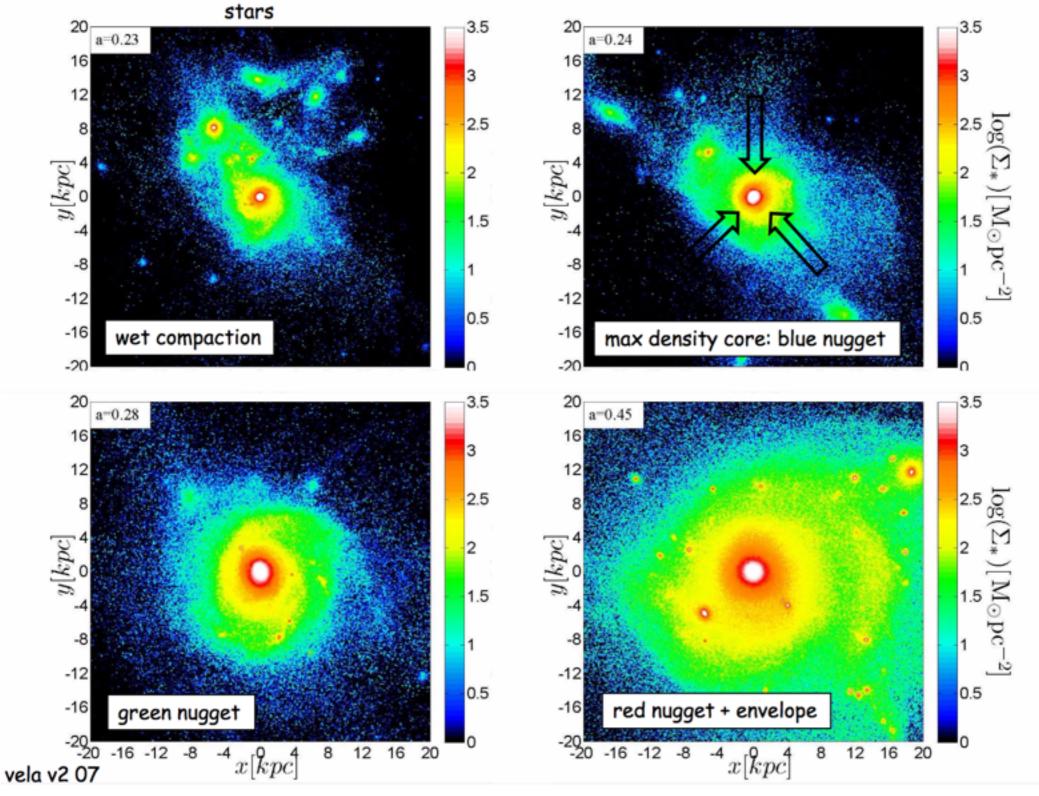
GROUP #3: Find new hidden observables in the data, - <u>Linking observations and theory</u>





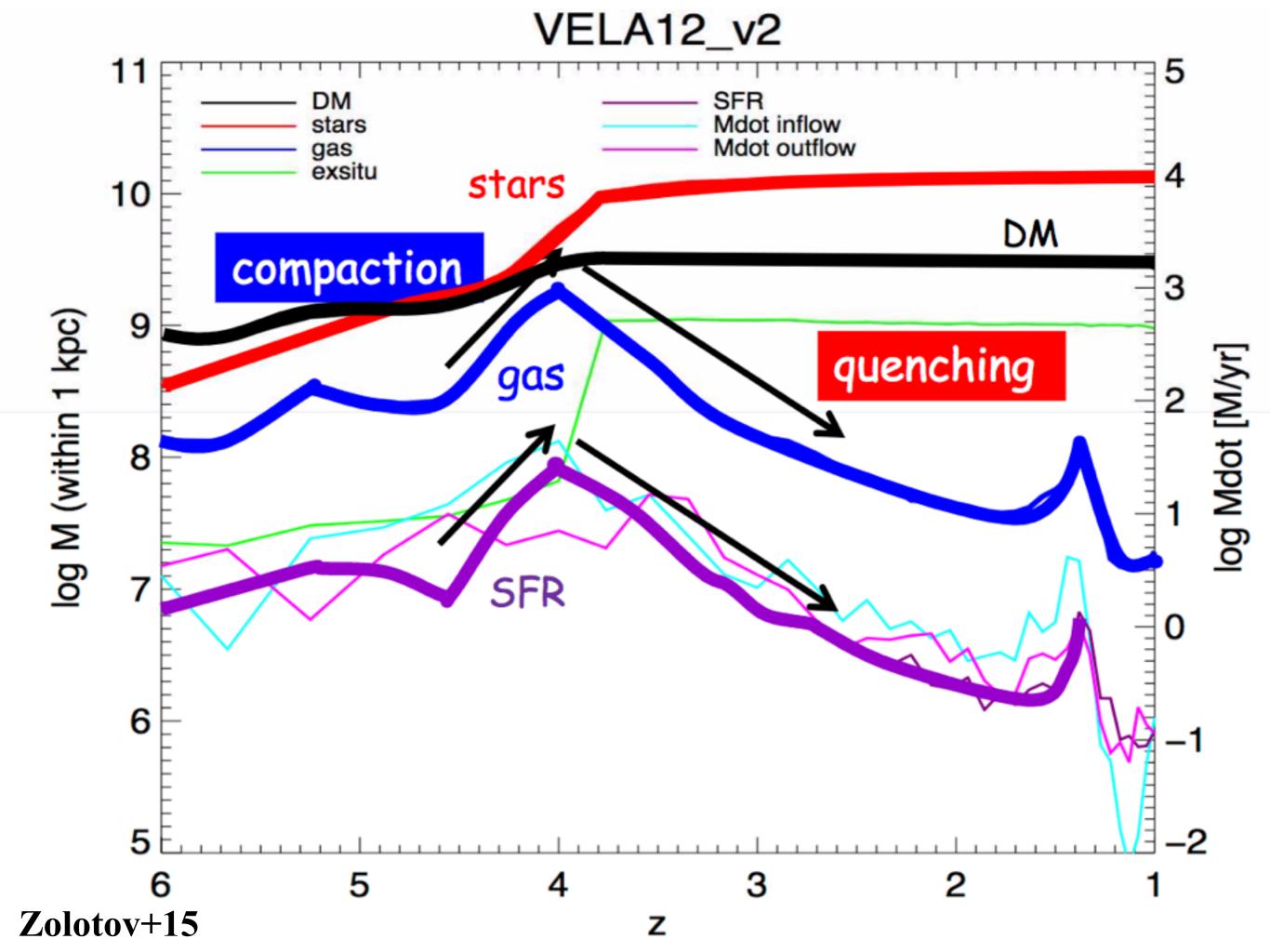
Is "wet compaction" a common mechanism for bulge formation?

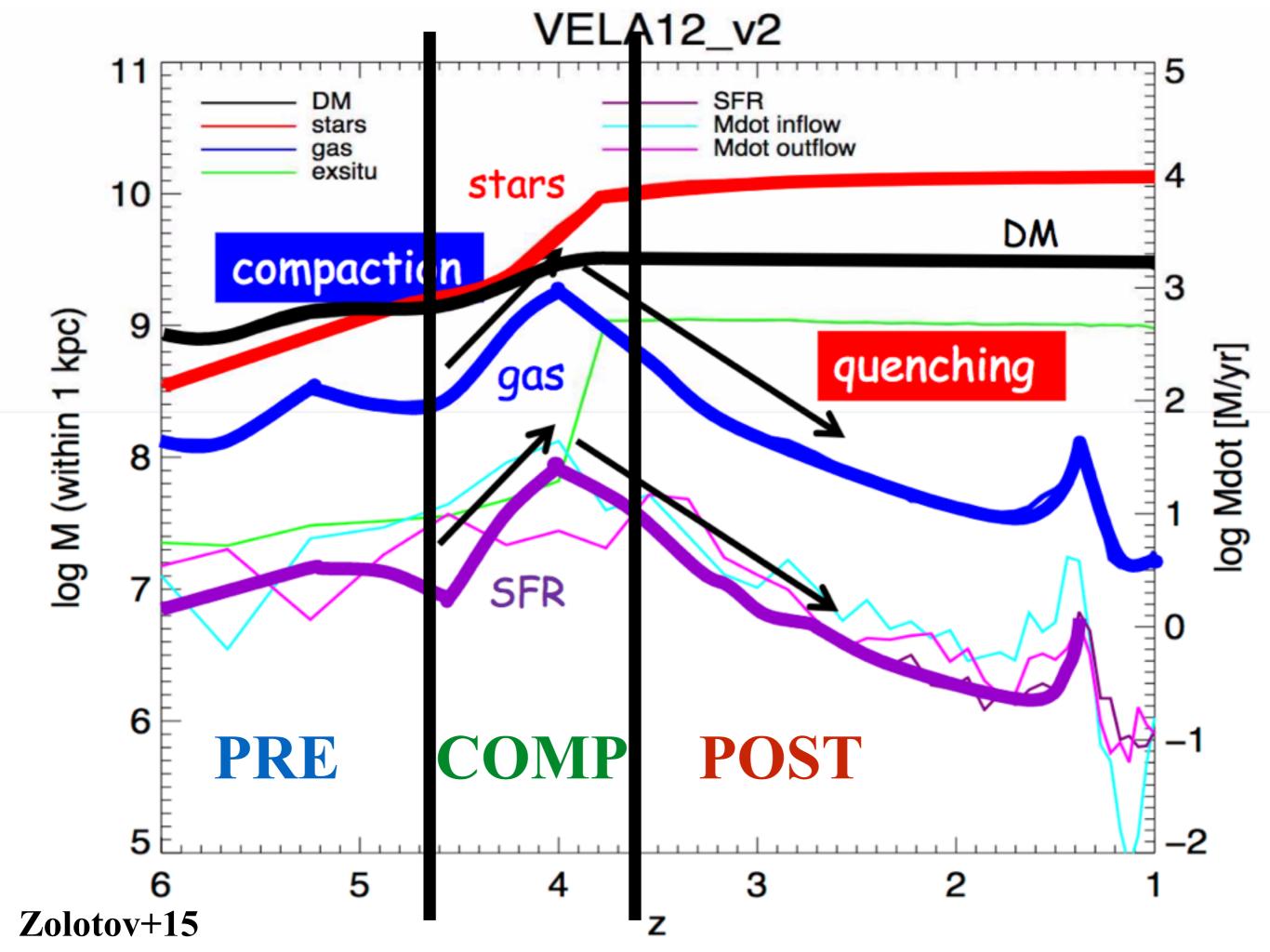
Is "wet compaction" a common mechanism for bulge formation?

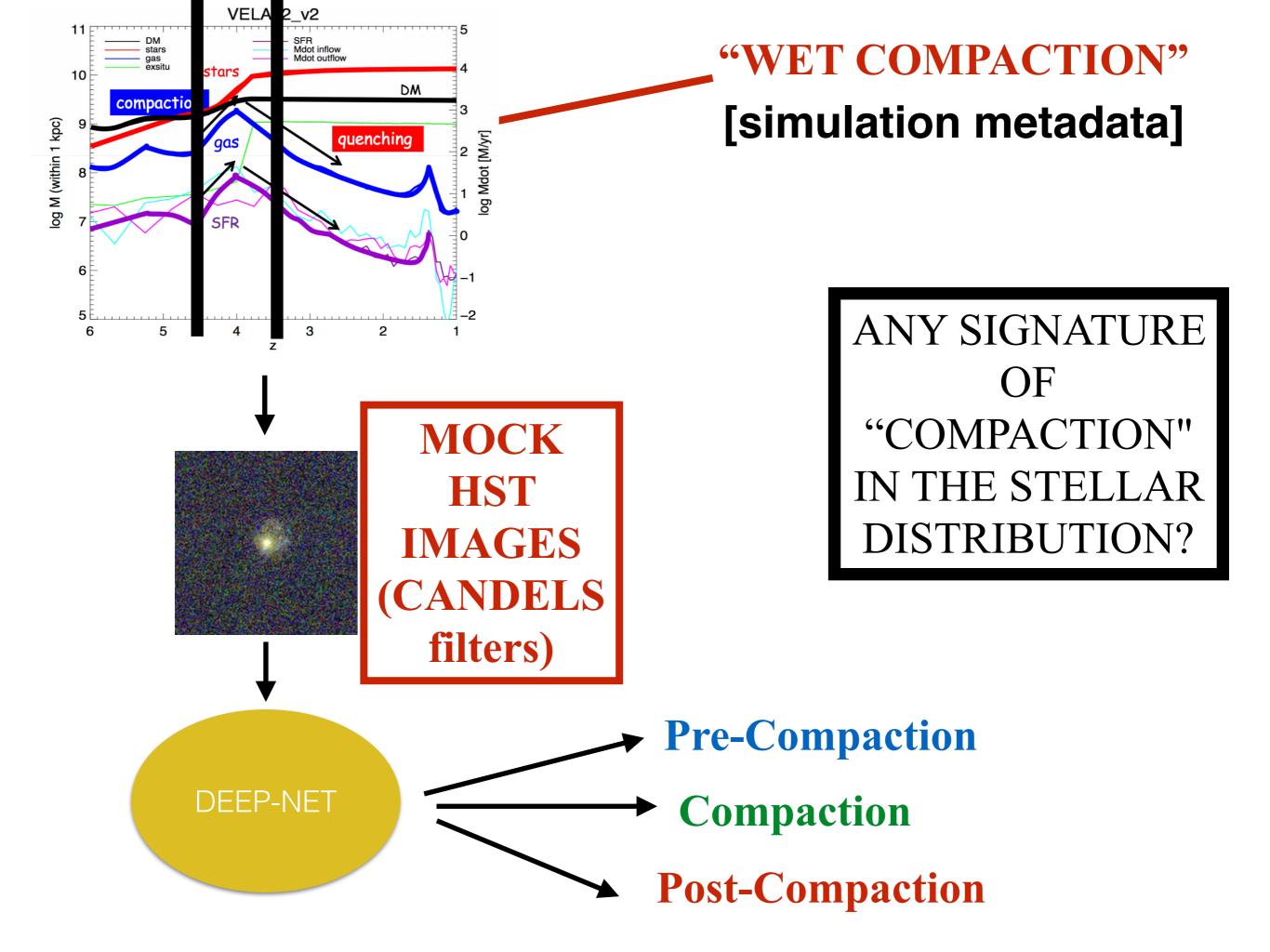


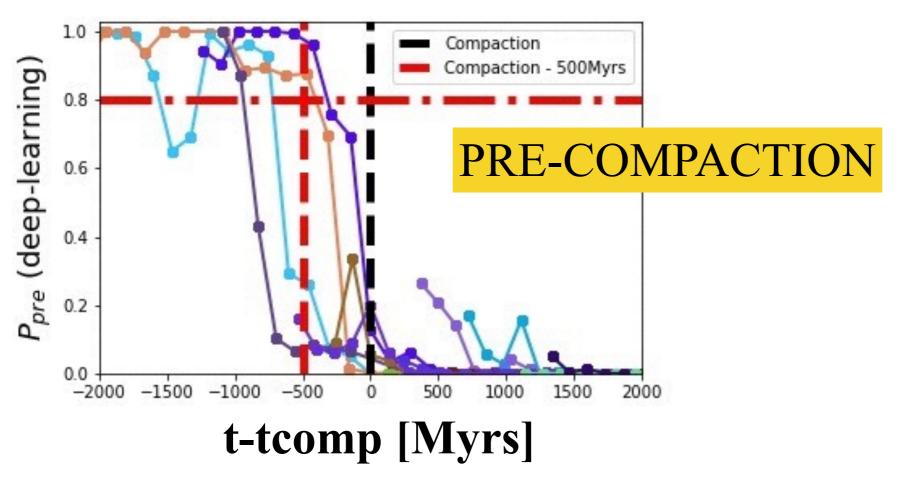
Ceverino+15 Zolotov+15 Tacchella+17

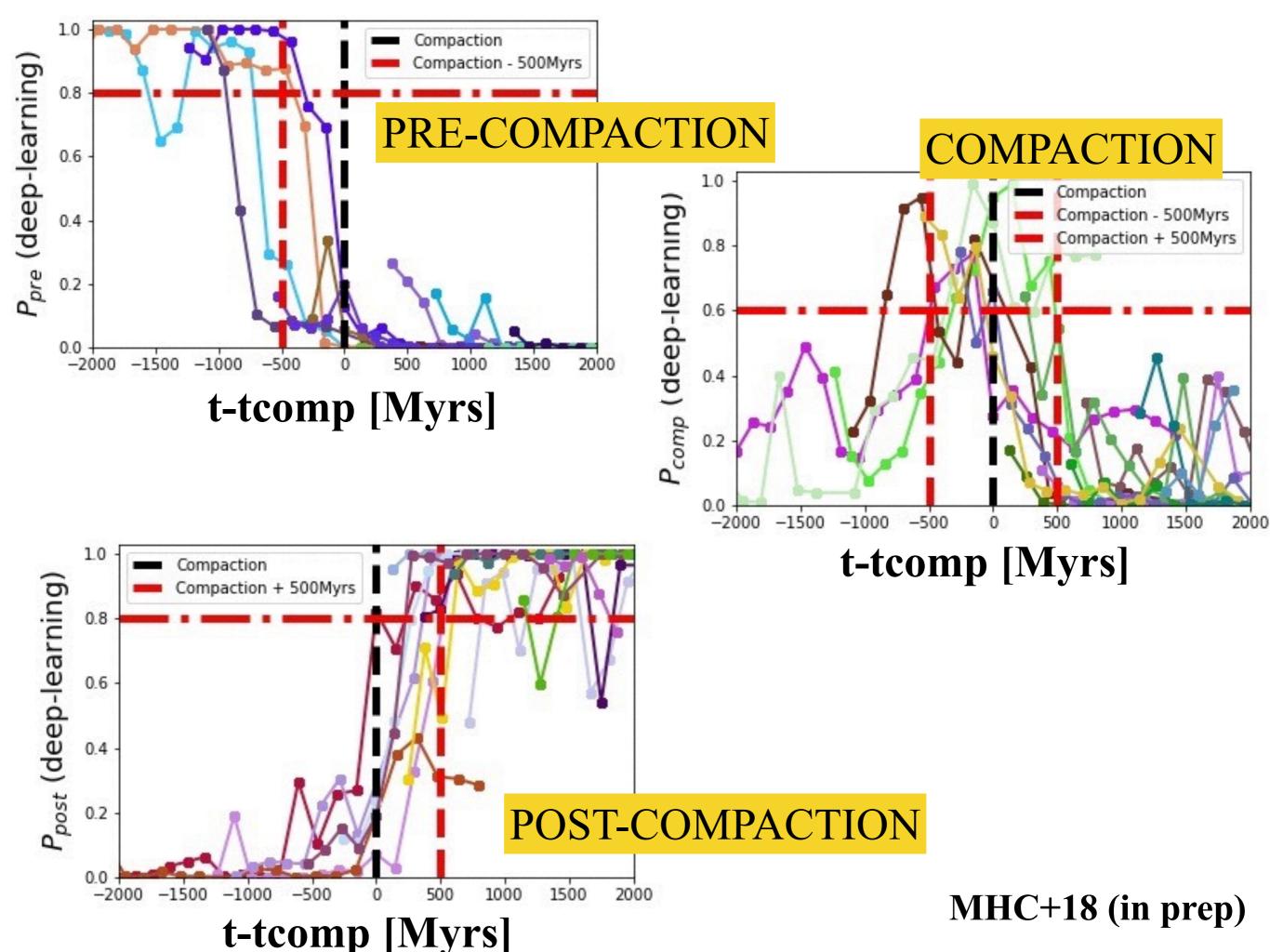
Courtesy of A. Dekel

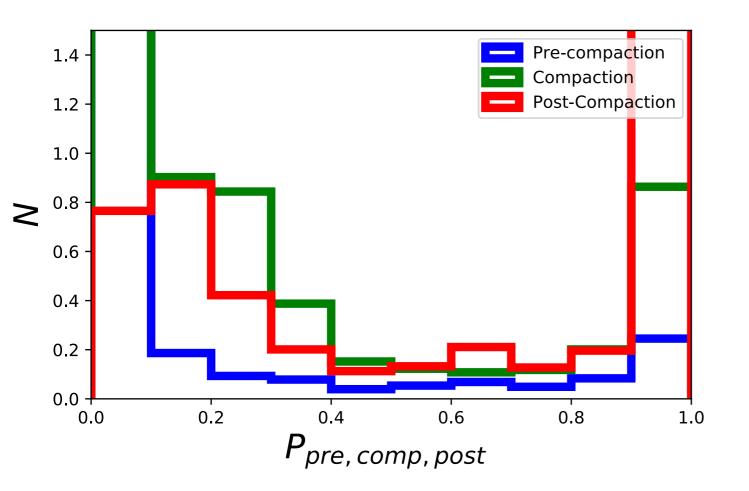




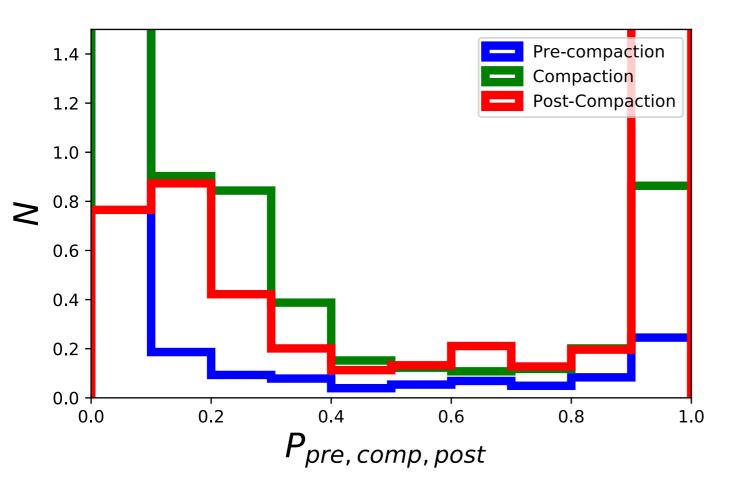




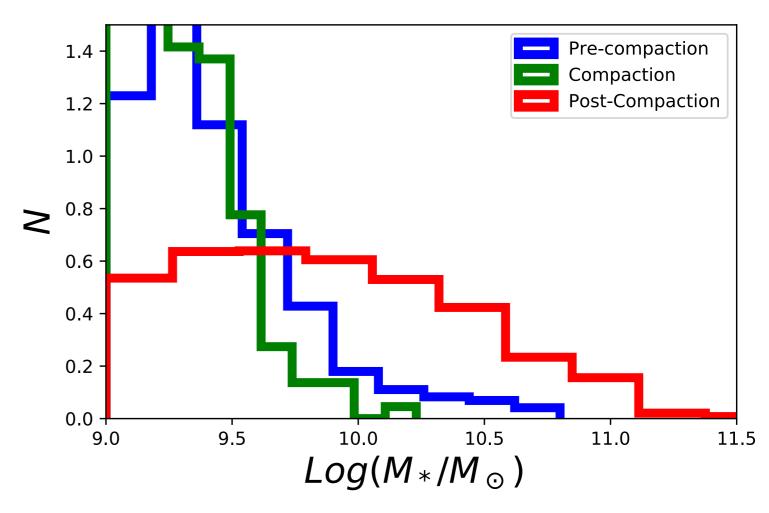


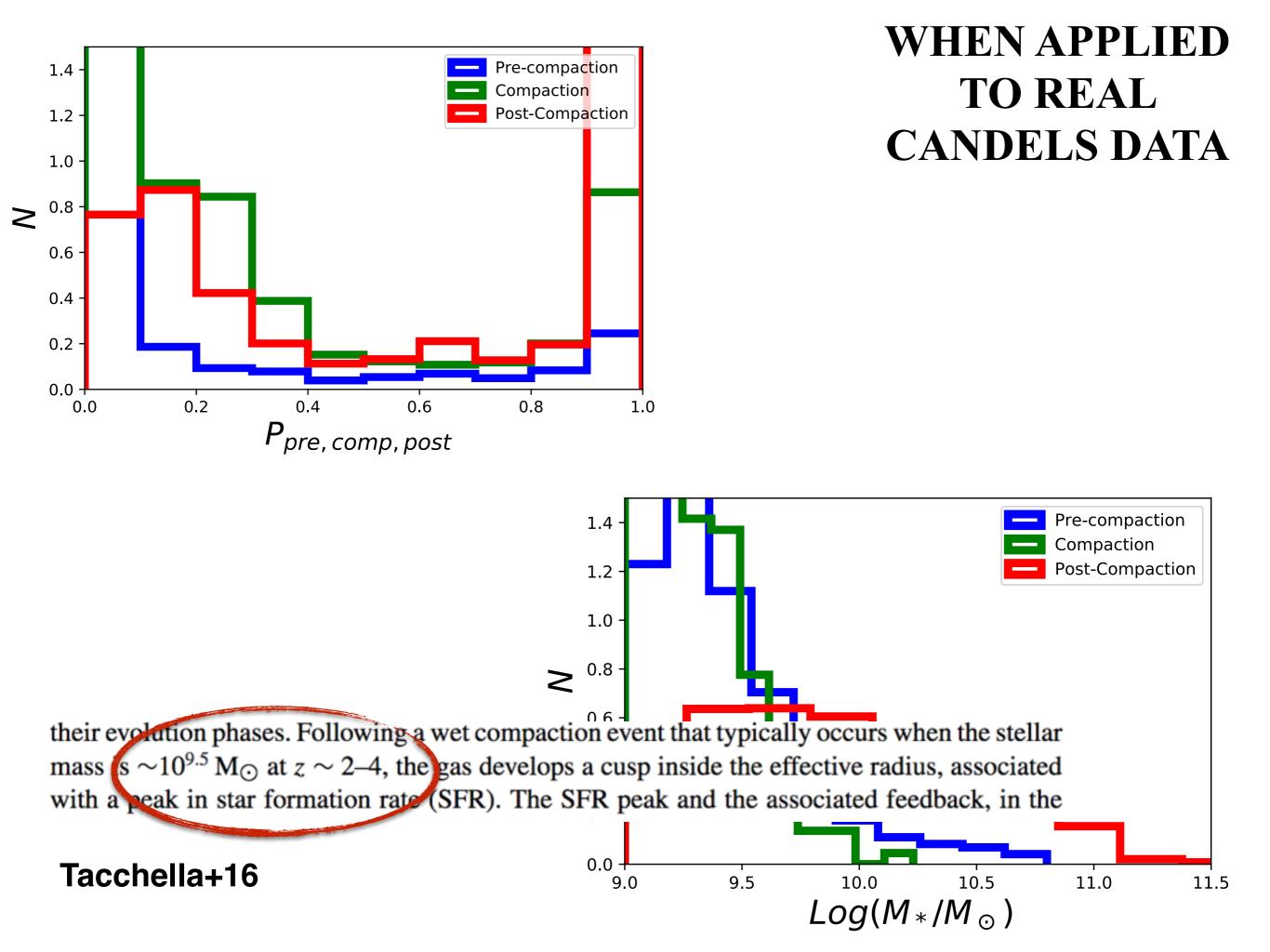


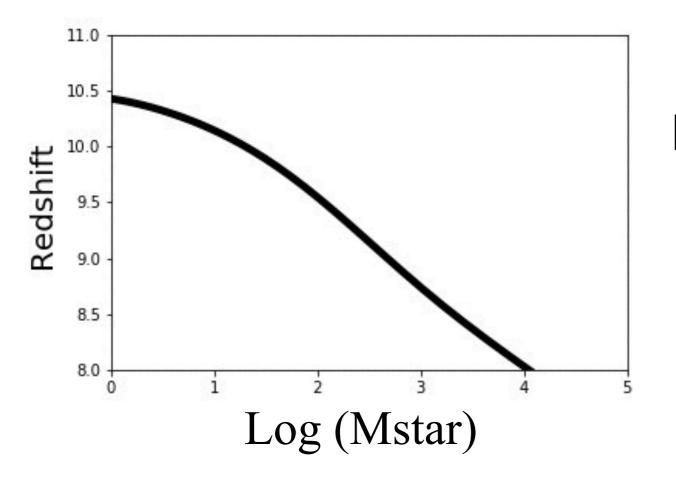
WHEN APPLIED TO REAL CANDELS DATA

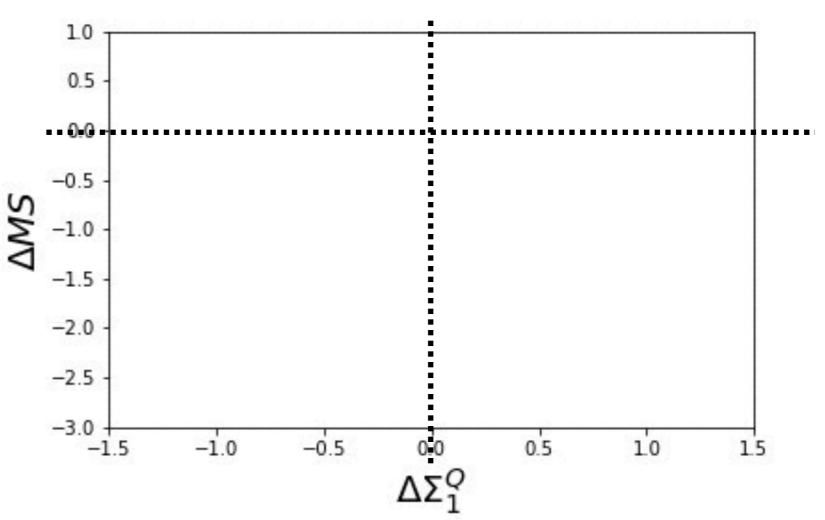


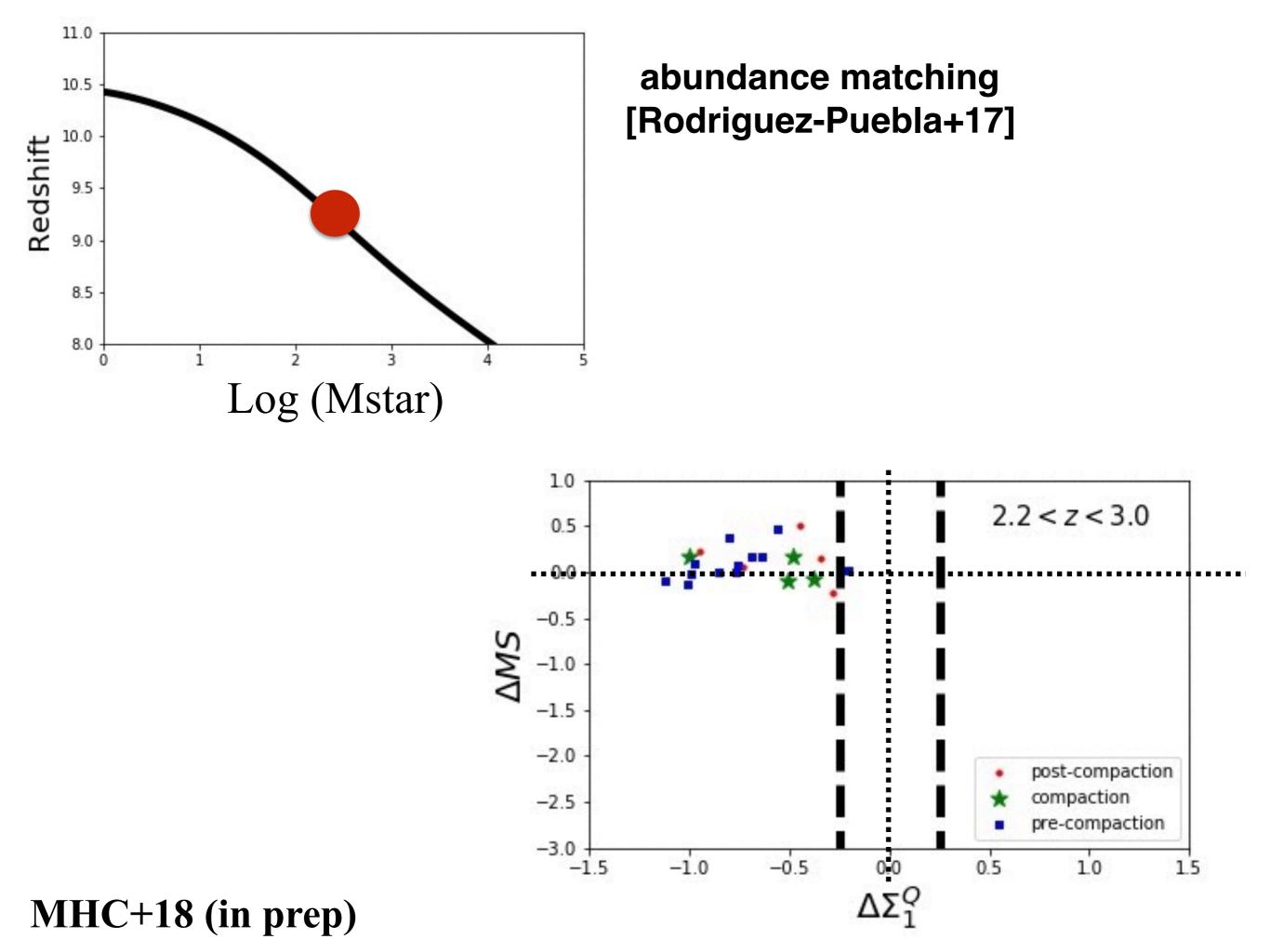
WHEN APPLIED TO REAL CANDELS DATA

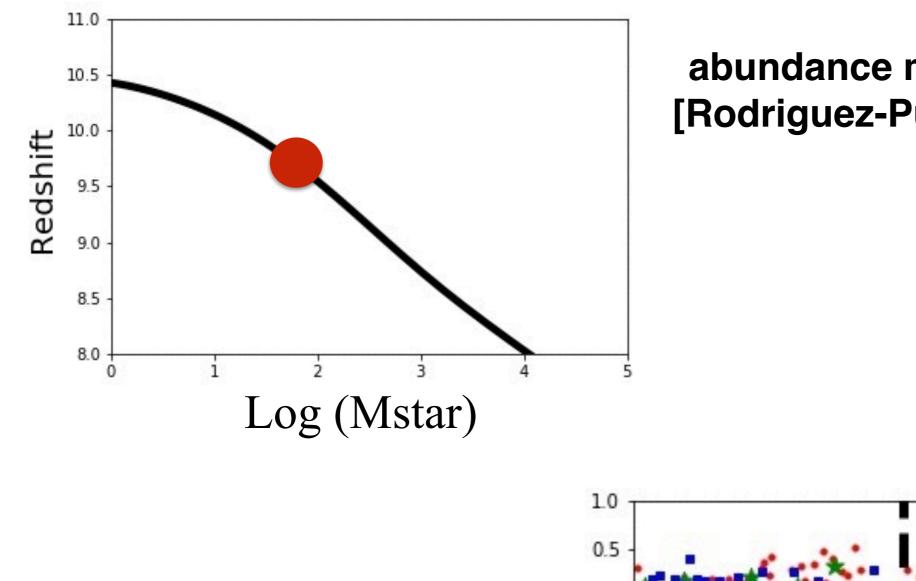


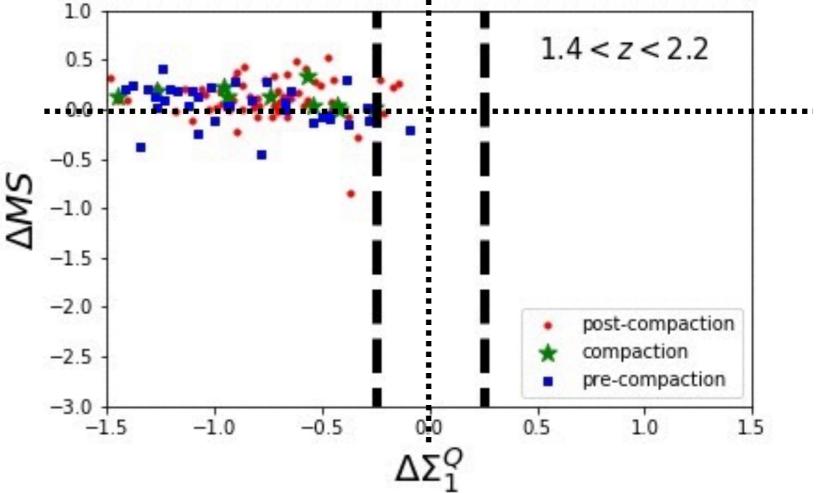


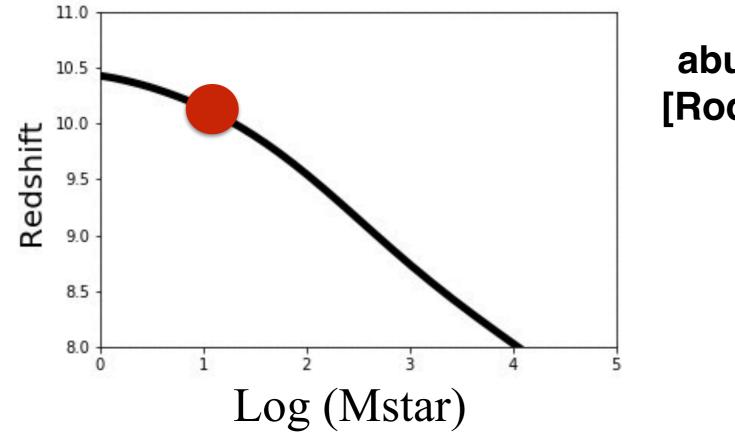


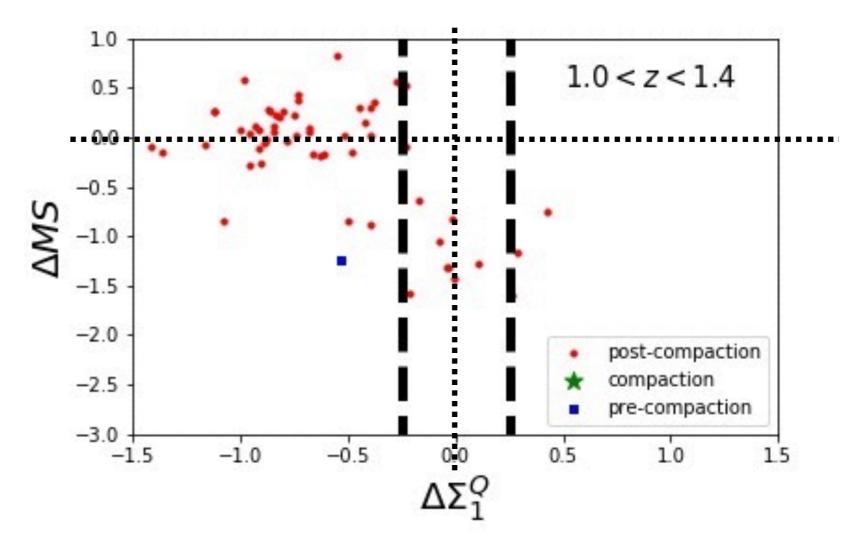


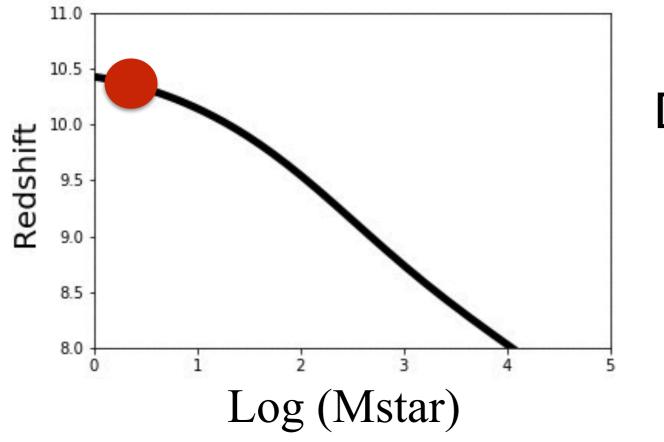


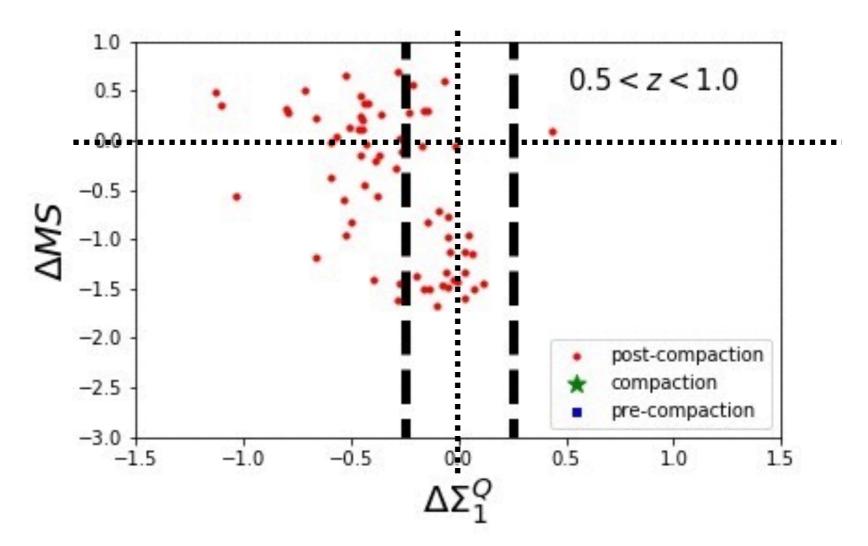




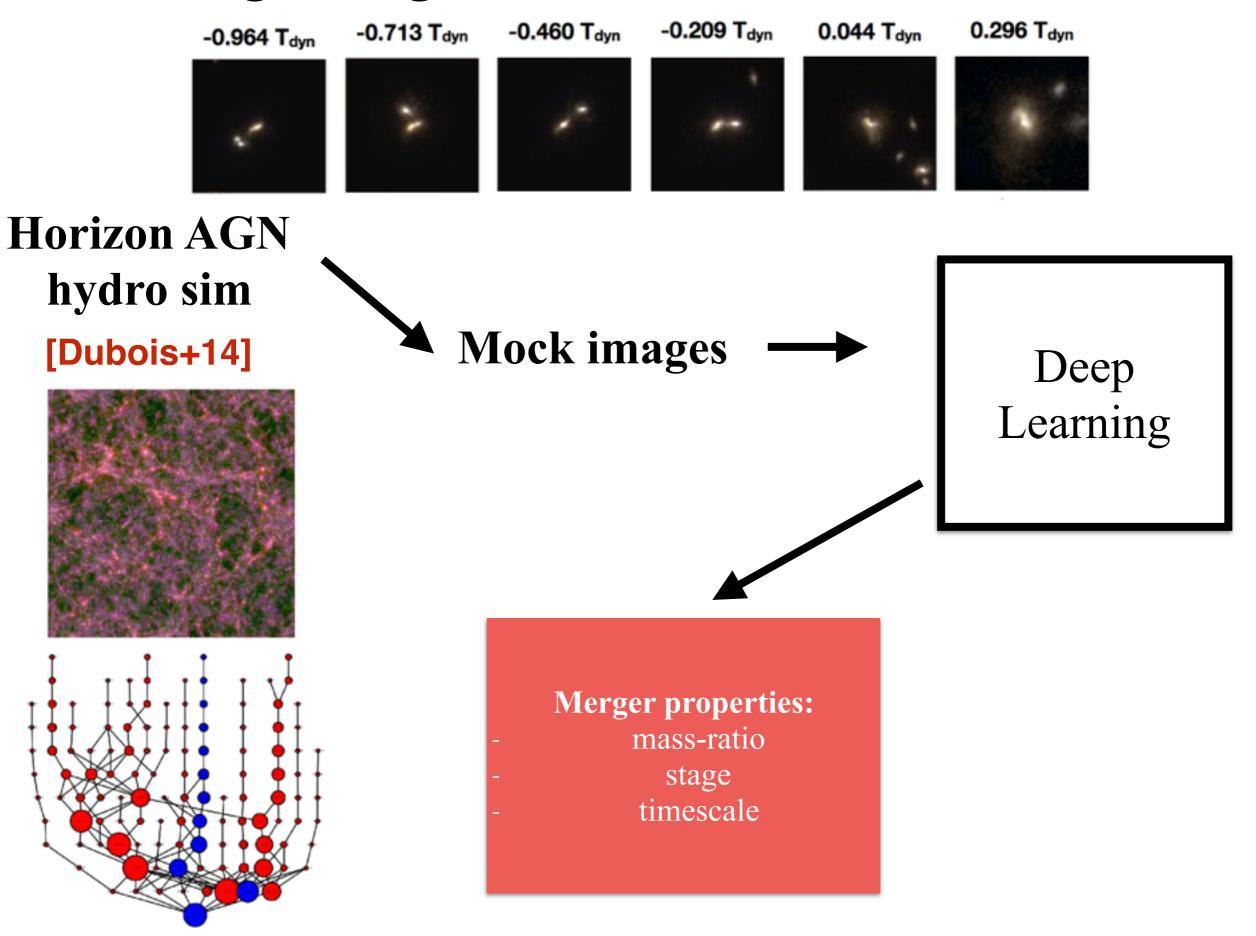




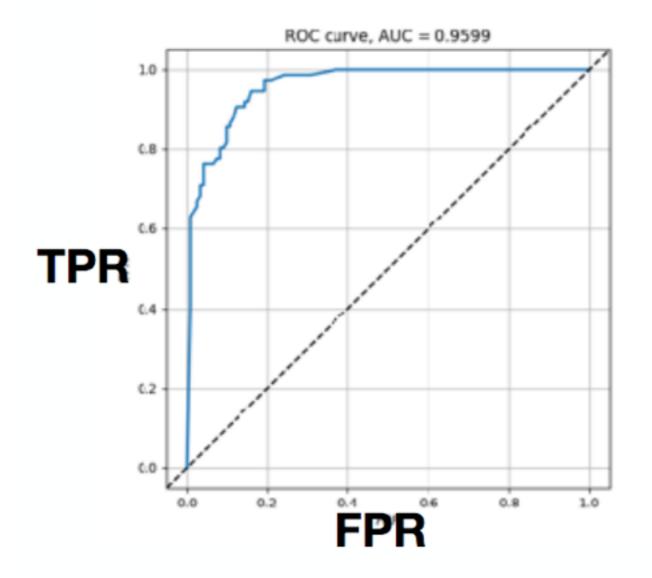




Dissecting mergers with DL



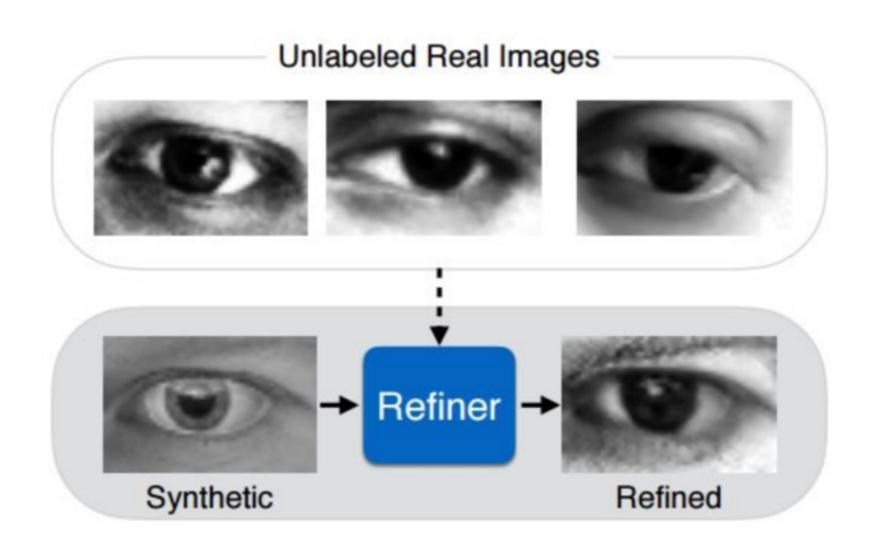
MERGER PHASE



Accuracy over validation set: ~ 96%

GROUP #4: Finding the unknown?

[ANR project submitted]



GANs for outlier detection....

Shrivastava+16

DL FOR FOR GALAXIES?

- GROUP #1: Time consuming tasks that humans do easily but classically challenging for computers classification of objects
- GROUP #2: Efficient and fast <u>quantitative</u> <u>measurements</u> on large amount of (multi-lambda) data [photoz's, sizes, ellipiticities]
- **GROUP #3:** Find hidden unknown correlations in the data, Linking observations and theory

• **GROUP #4**: Finding the unknown?

Group #1: Classification of large datasets

Requires a huge volume of

"labeled" data to train. Human intervention is necessary anyway...

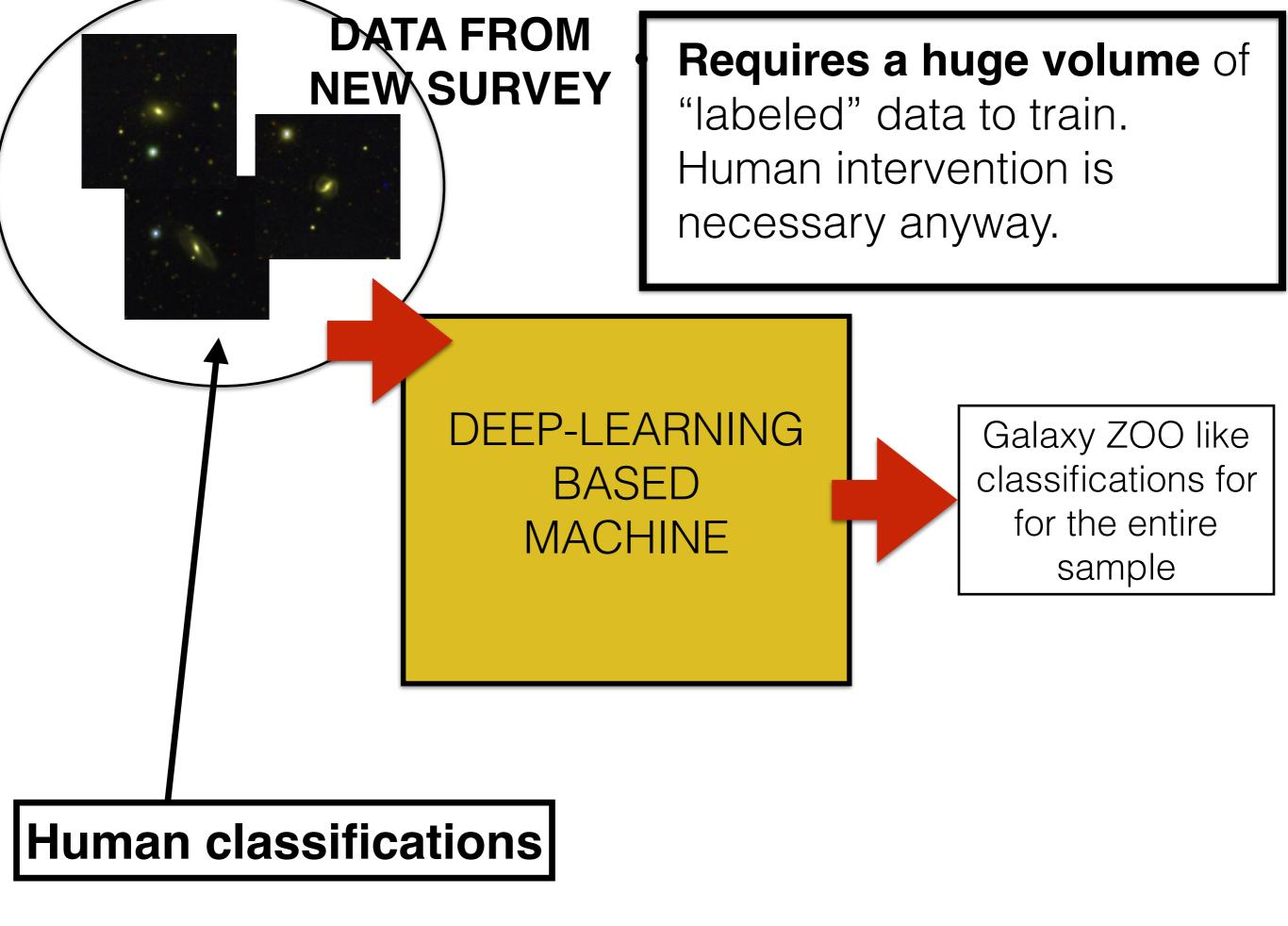
DATA FROM NEW SURVEY

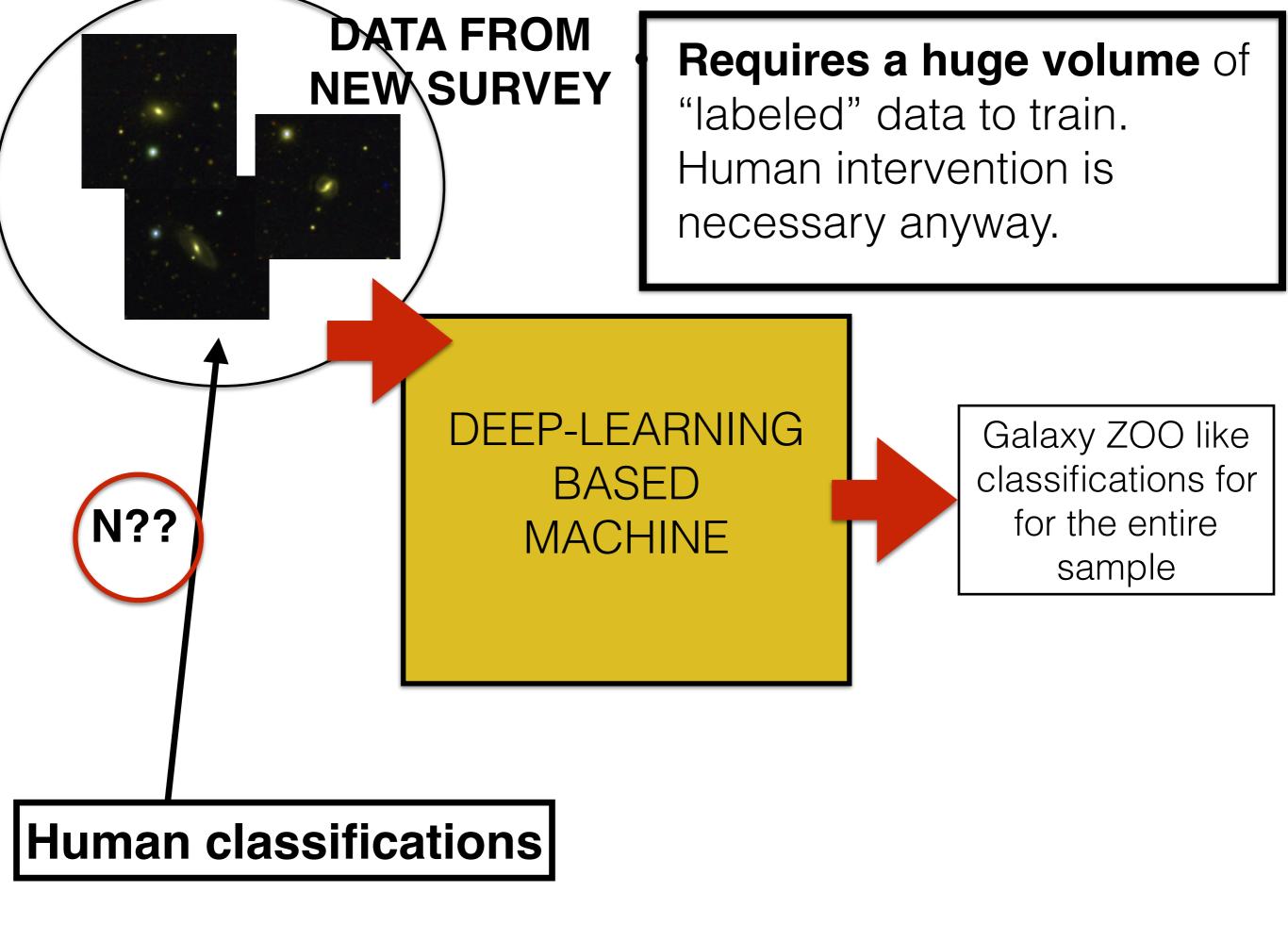
Requires a huge volume of

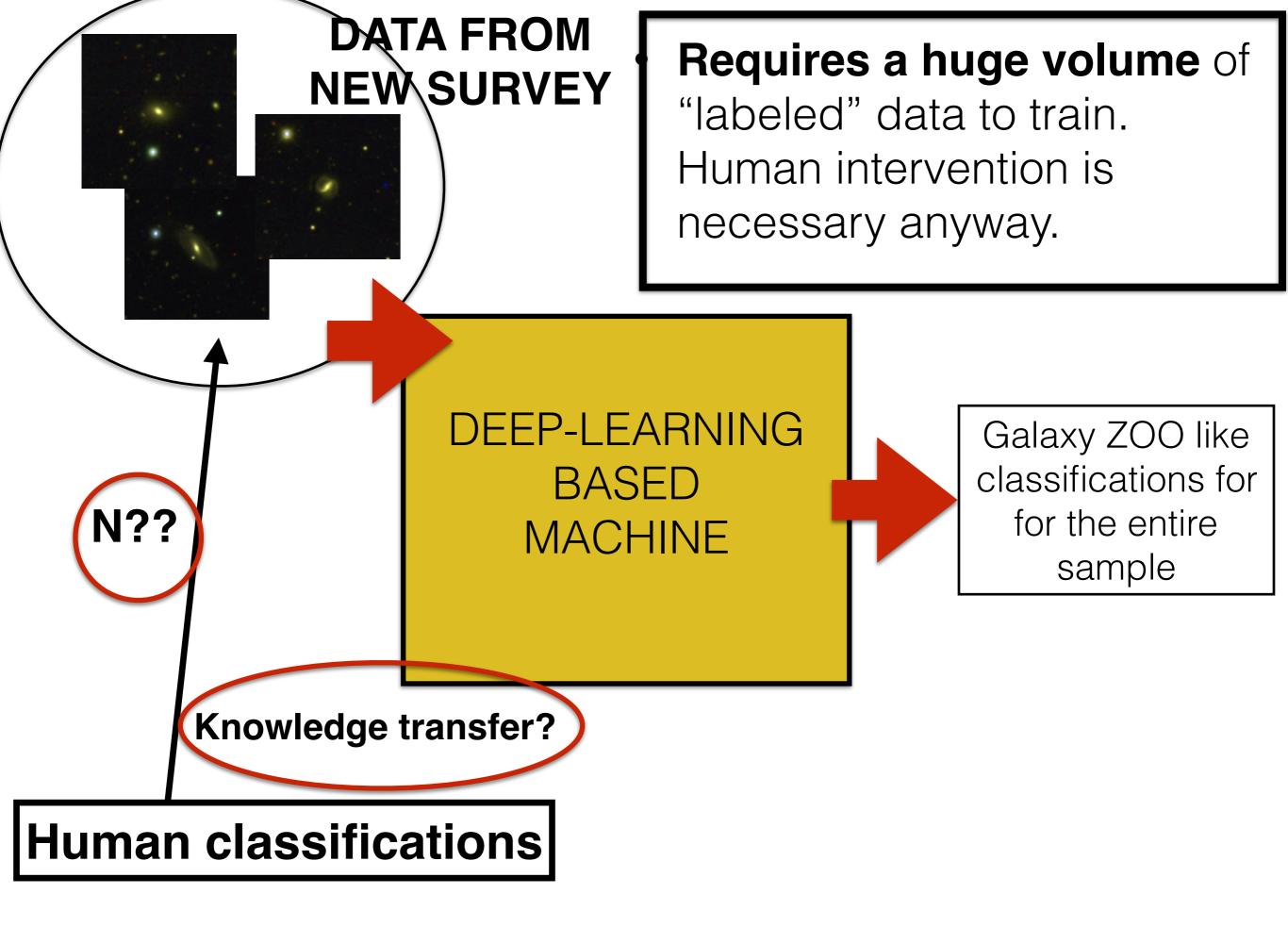
"labeled" data to train. Human intervention is necessary anyway.

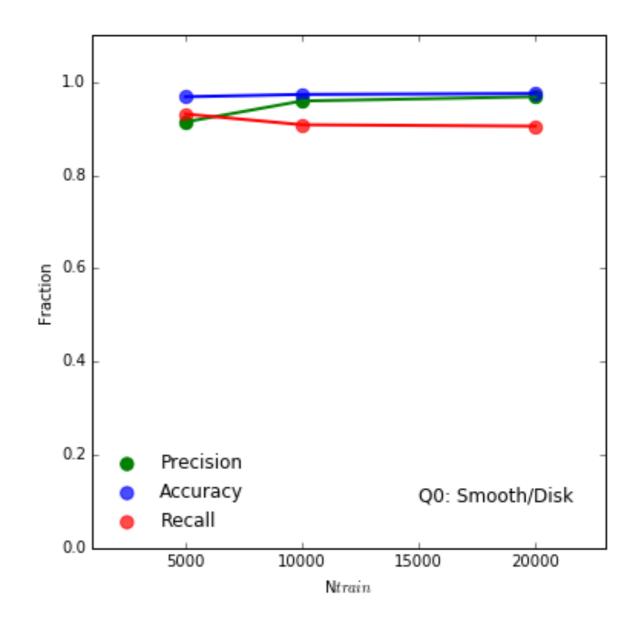
DEEP-LEARNING BASED MACHINE

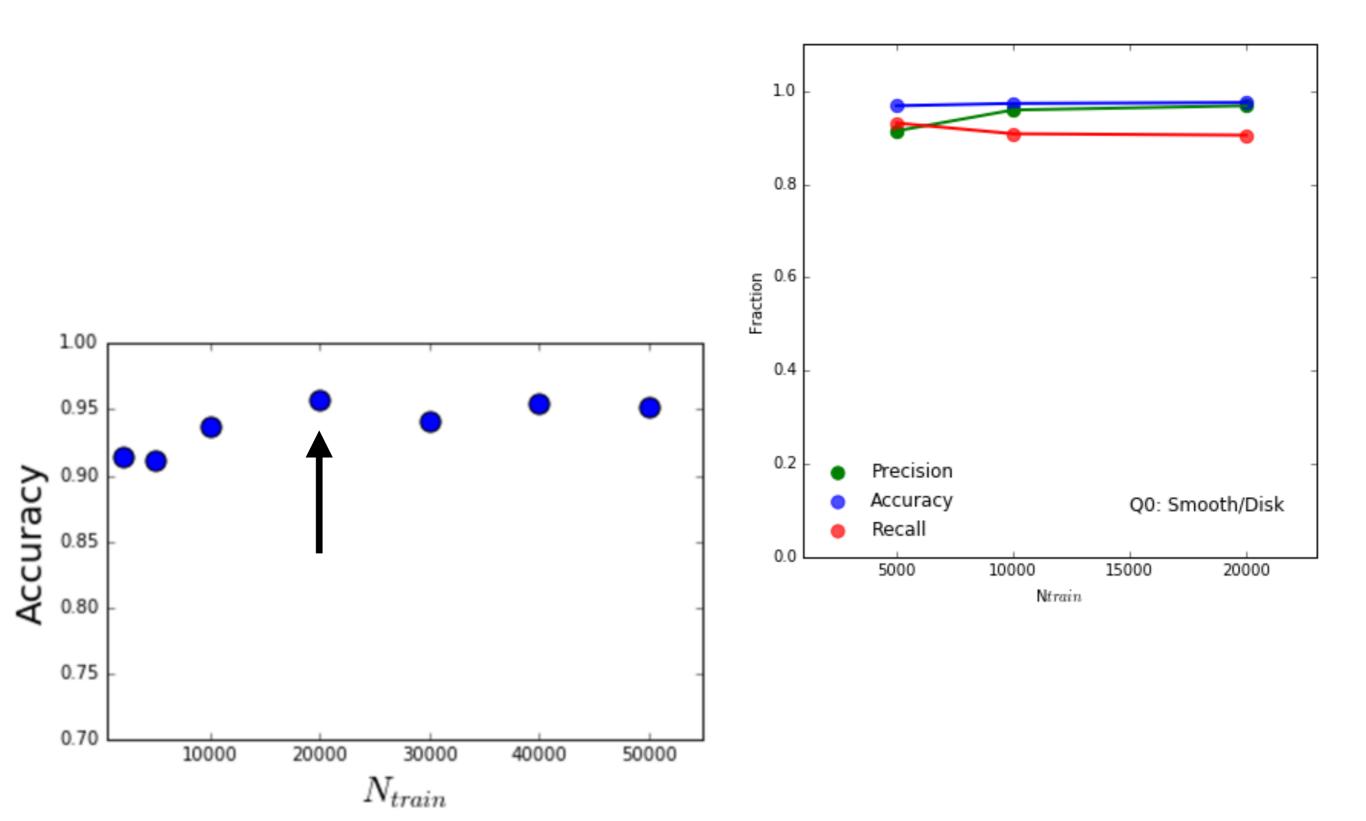
Galaxy ZOO like classifications for for the entire sample

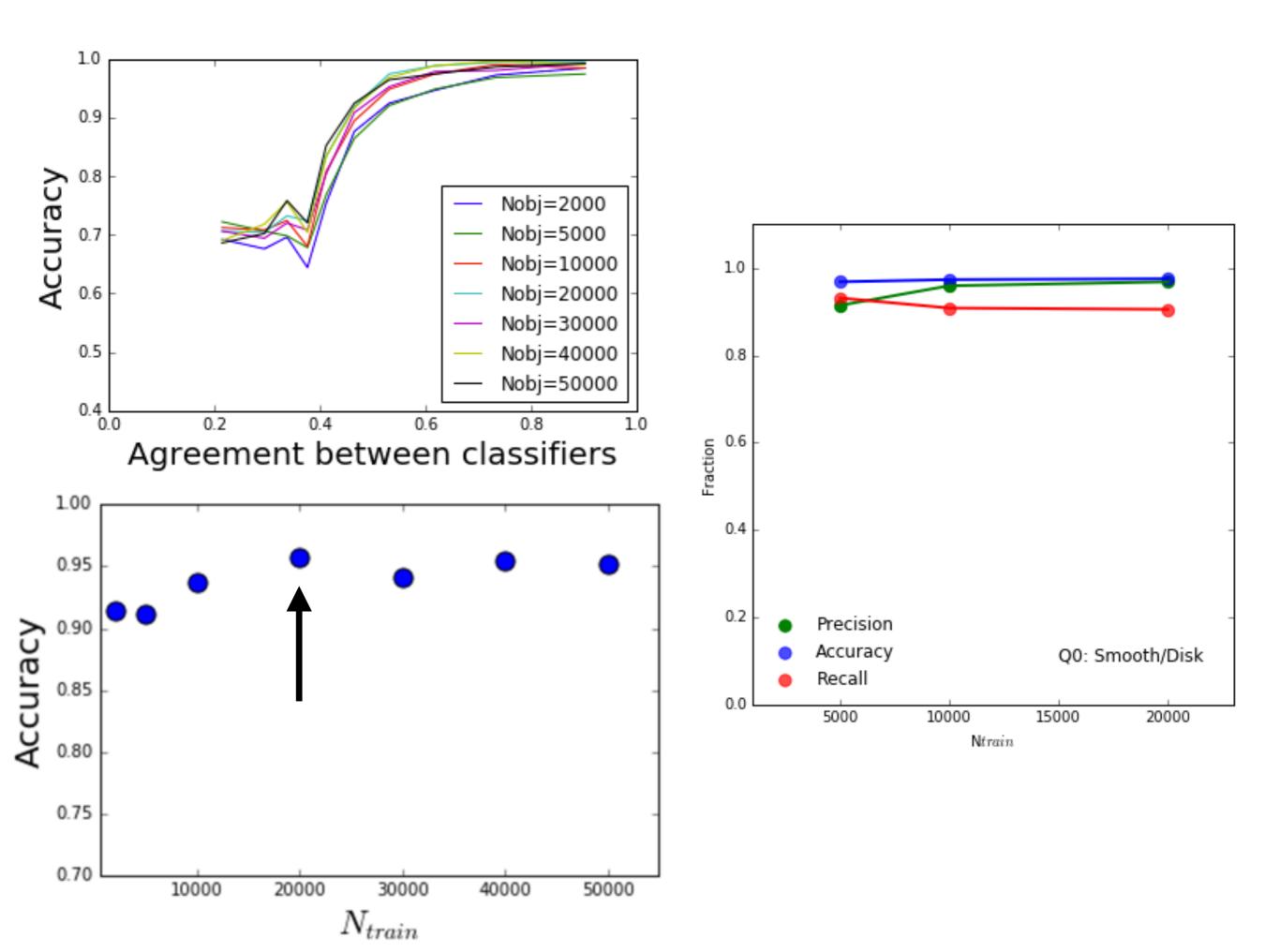


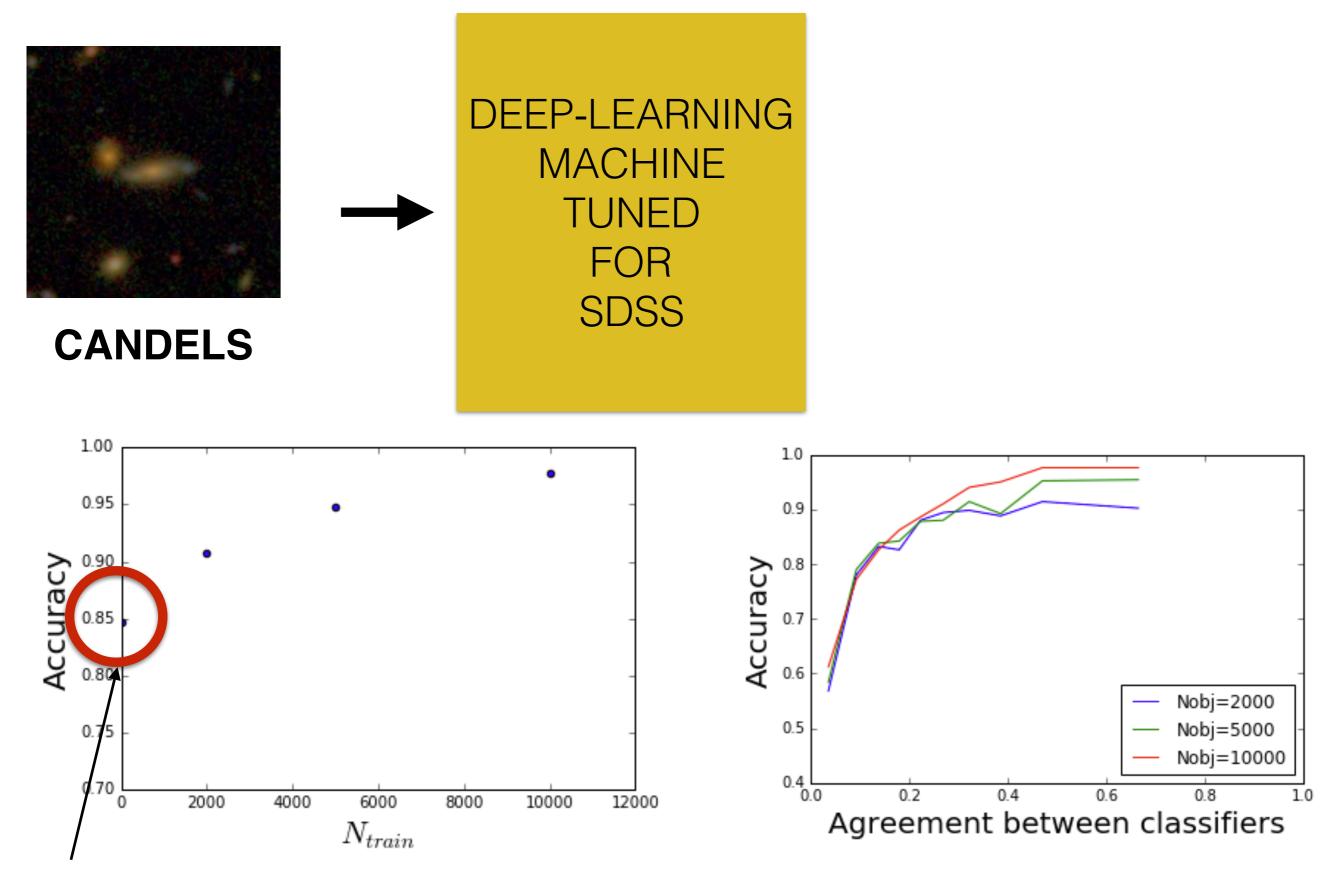




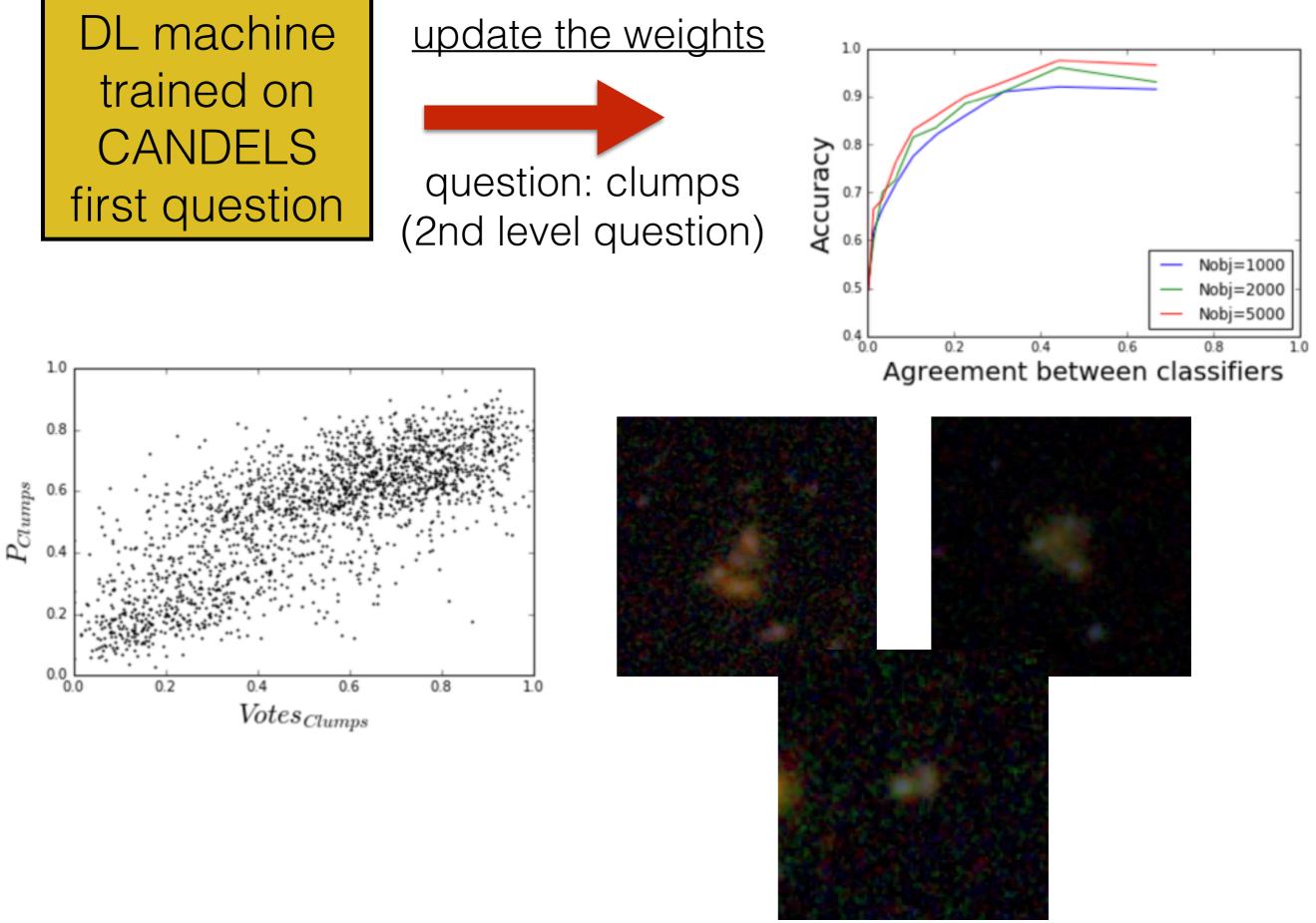




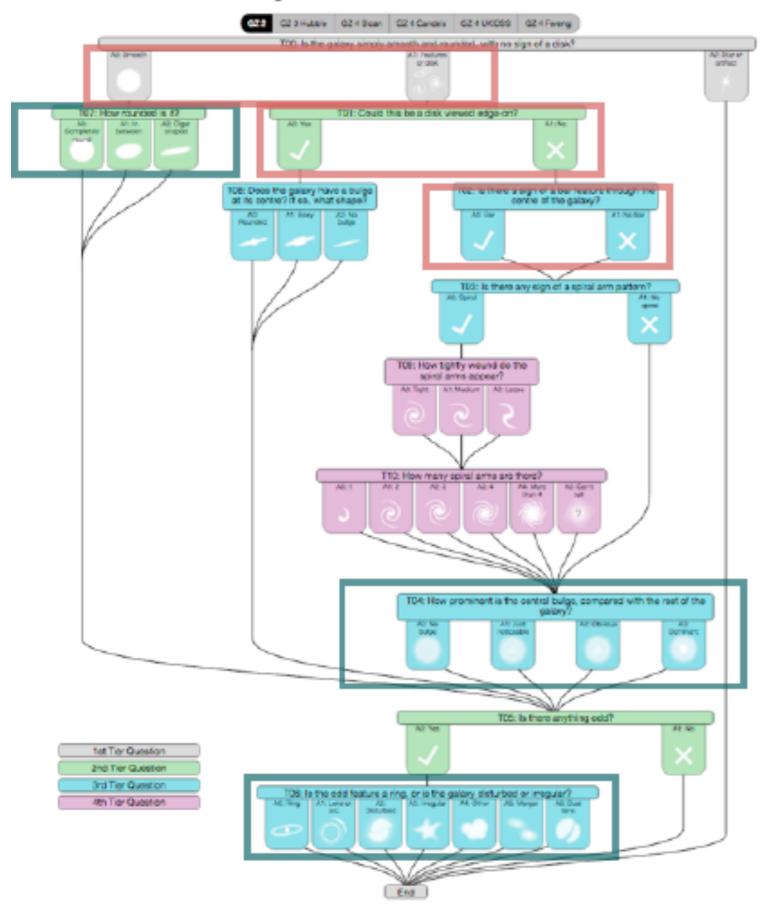


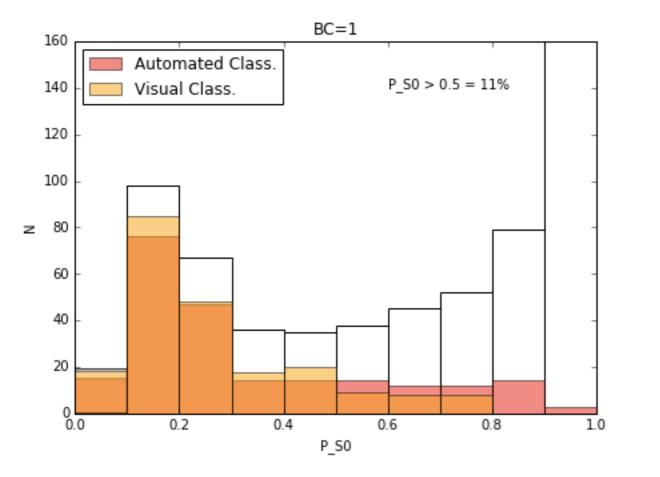


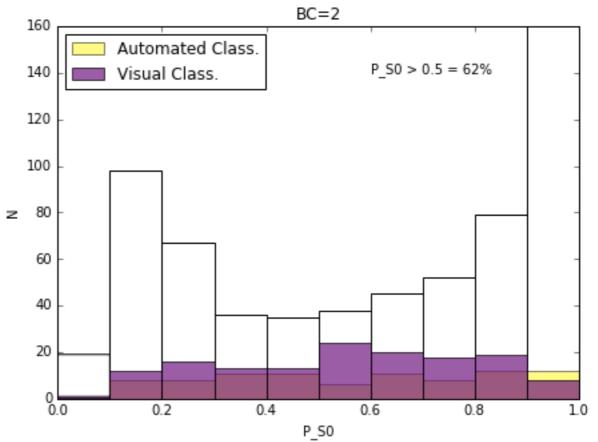
No training

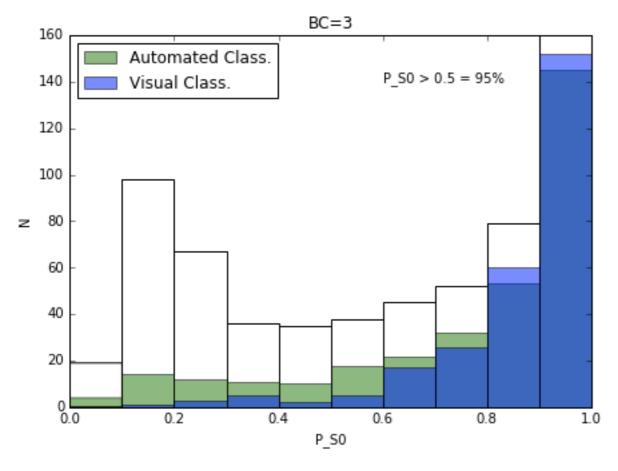


Galaxy Zoo Decision Trees









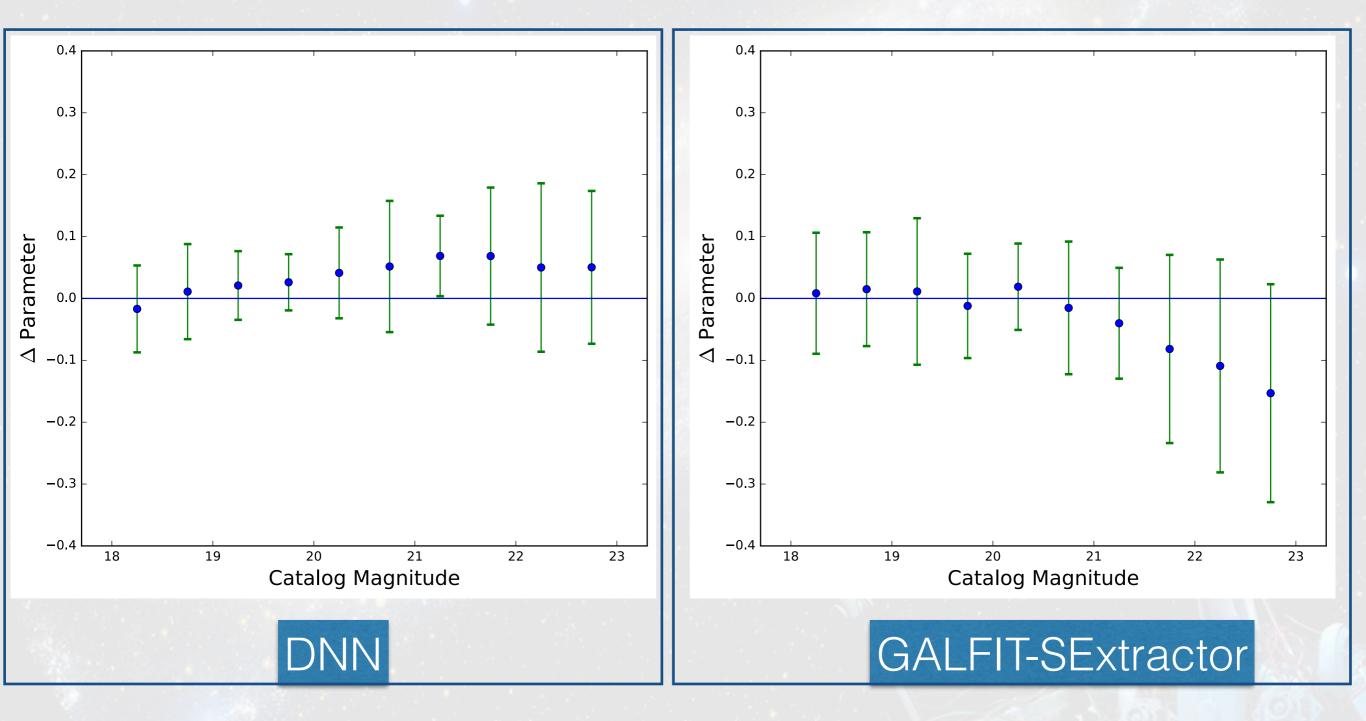
Comparison with Cheng, Faber+11

Dominguez-Sanchez, MHC+17

Group #2: Quantitative measurements

Predictions on Simulated Data

5000 stamps

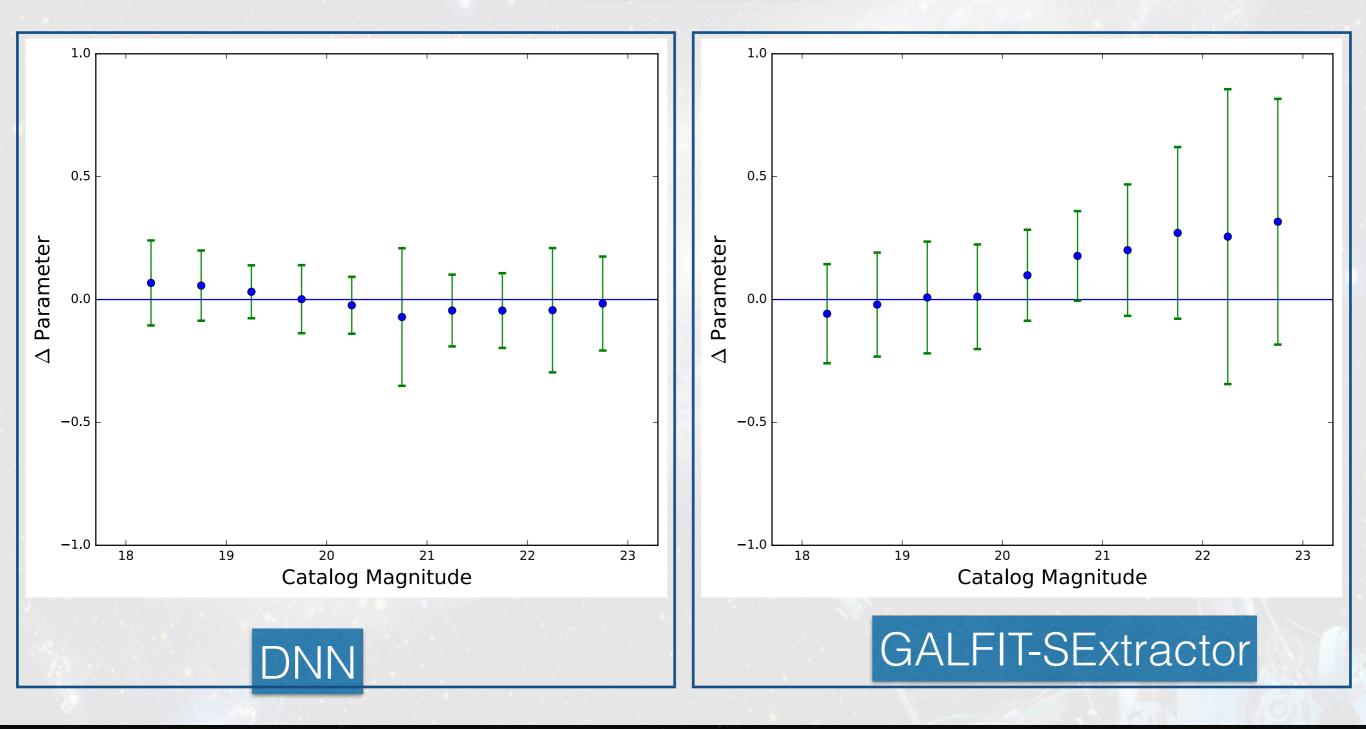


Diego Tuccillo, Observatoire de Paris

EWASS 2017, 26-30 June, Praga

Predictions on Simulated Data

5000 stamps



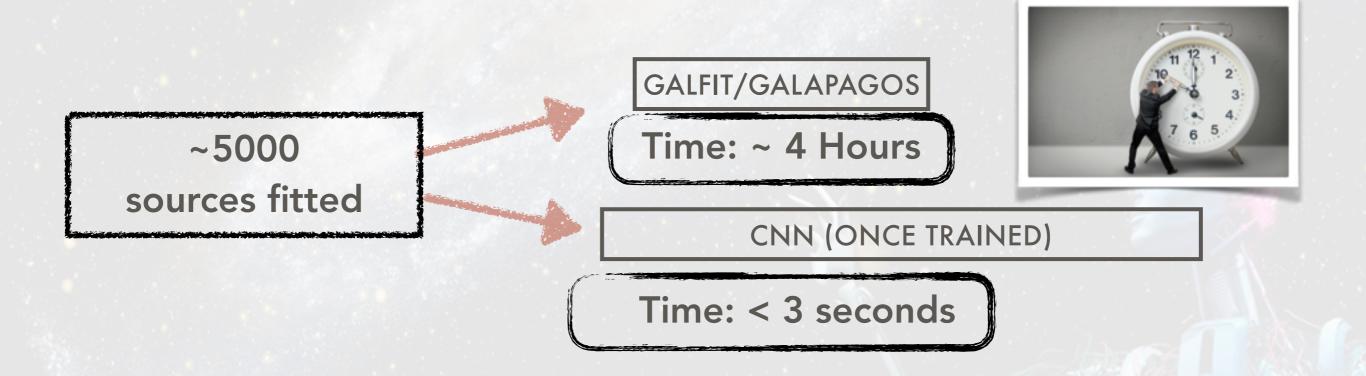
Diego Tuccillo, Observatoire de Paris

EWASS 2017, 26-30 June, Praga

Summary of predictions on simulation

Parameter	R^2 simulated data		
	Architecture 1	Architecture 2	GALFIT
Magnitude	0.947	0.995	0.986
Radius	0.892	0.955	0.738
Sérsic index	0.887	0.348	0.292
Ellipticity	0.755	0.603	0.896
Position Angle	0.941	nc	0.825

$$\frac{coefficient of determination}{R^2 = 1 - \frac{\sum_i (y_i - f_i)^2}{\sum_i (y_i - \bar{y})^2}}$$



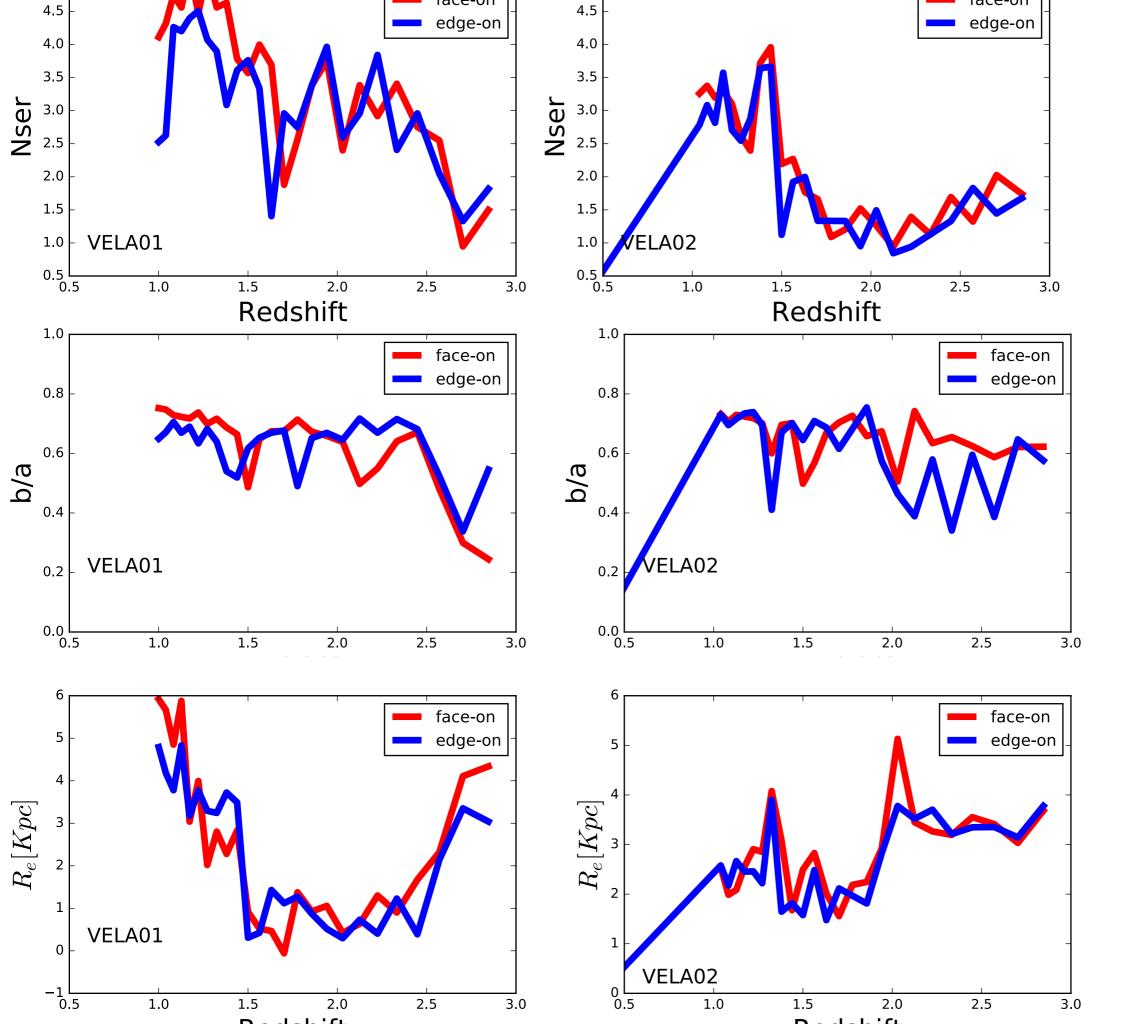
Deep learning for galaxy profile fitting

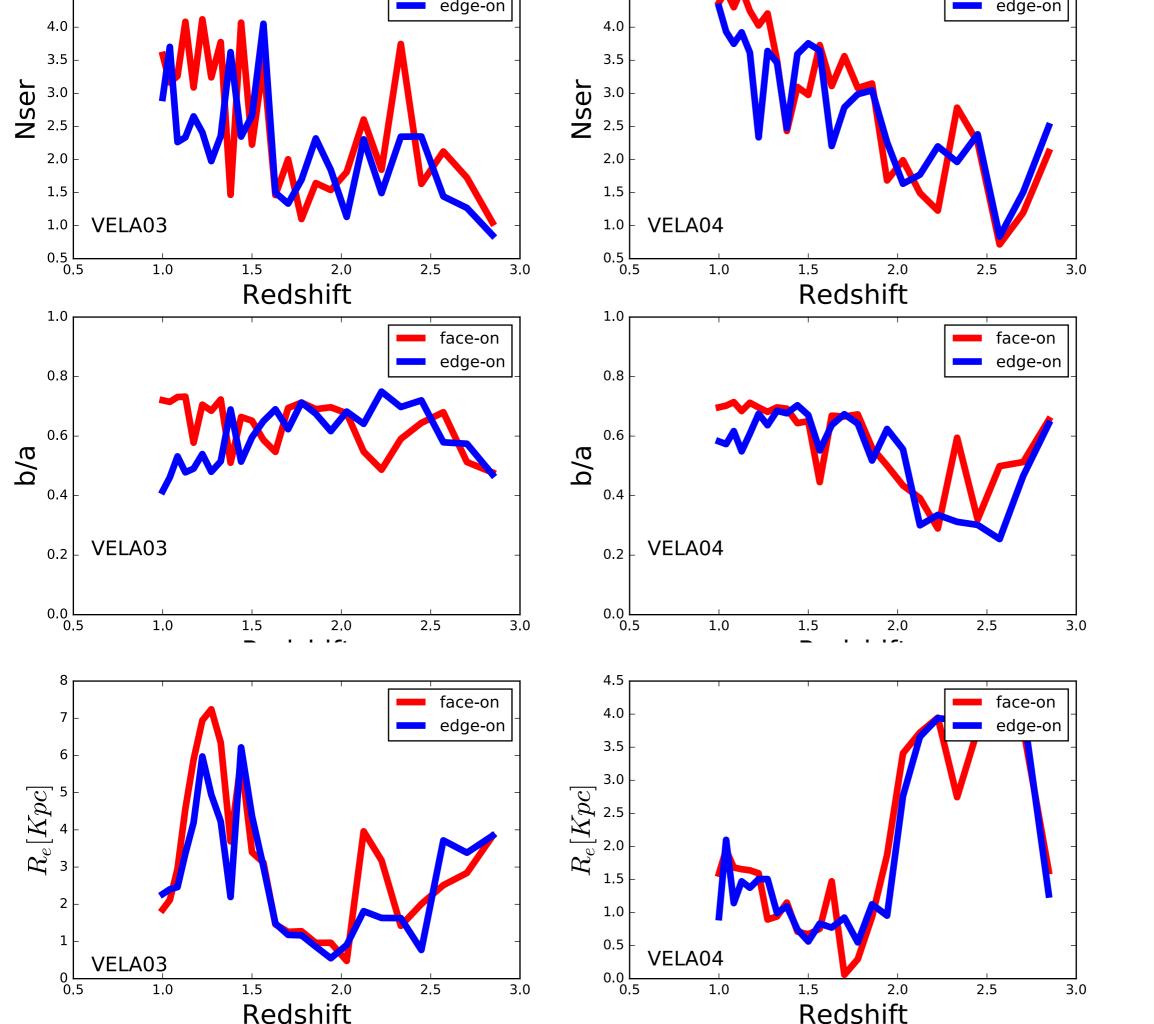
Summary of Predictions on <u>Real Data</u> (after domain adaptation)

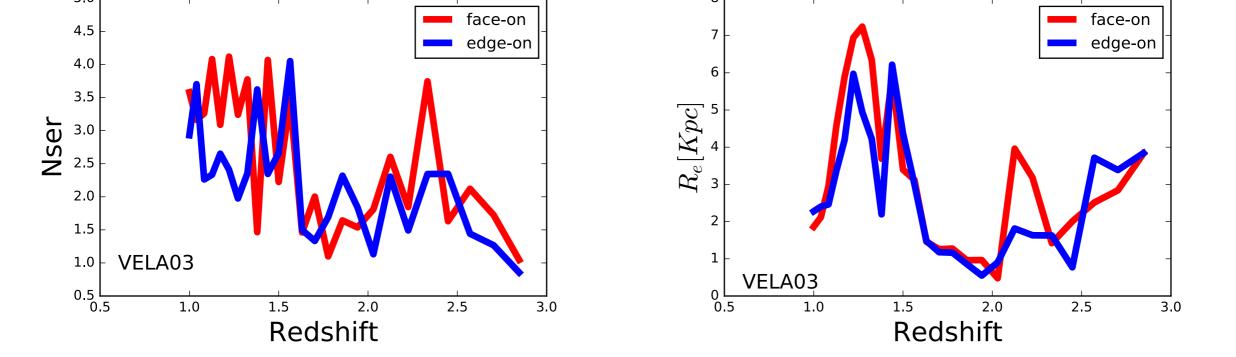
Parameter		R^2 Real data	
	Before TL	After TL	2 GALFIT
Magnitude	0.788	0.982	0.985
Radius	-1.639	0.856	0.860
Sérsic index	-0.768	0.718	0.735
Ellipticity	0.256	0.897	0.904
Position Angle	0.132	0.893	0.863

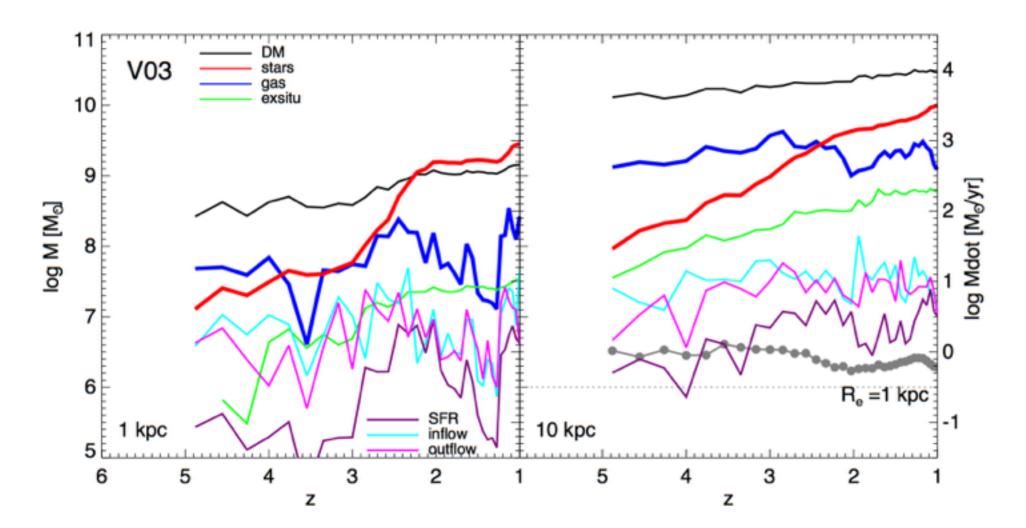
coefficient of determination

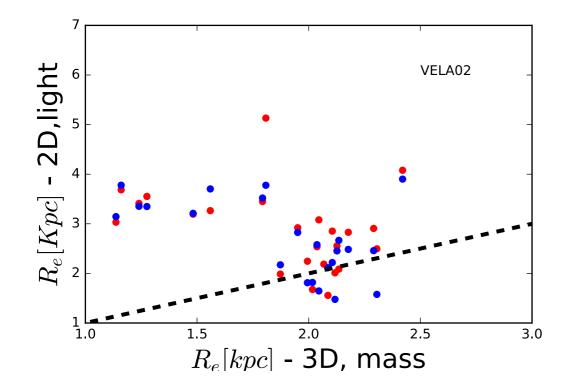
$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

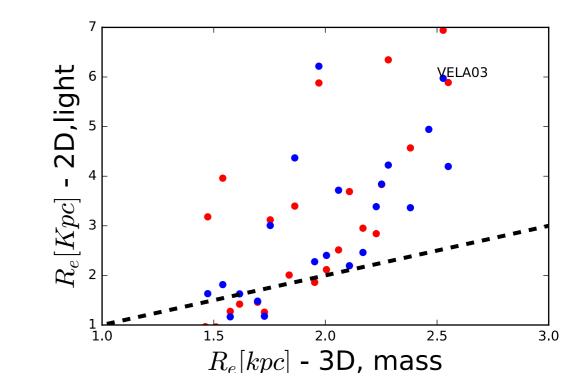


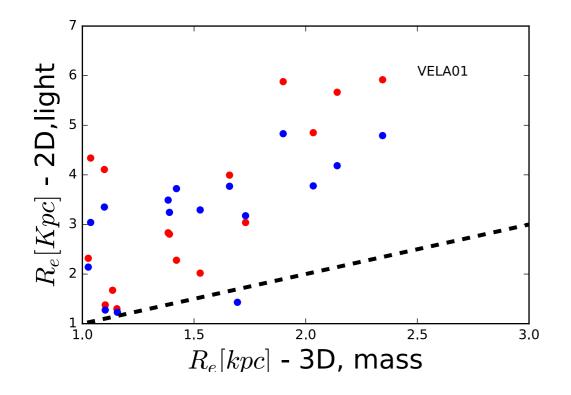












Group #3: Hidden observables / correlations