Detailed study of the faintest Milky Way satellites using the Pristine CaH\&K survey

Nicolas Longeard

Observatoire Astronomique de Strasbourg

PI: Else Starkenburg \& Nicolas Martin. Co-ls: David Aguado, Carlos Allende Prieto, Anke Arentsen, Edouard Bernard, Piercarlo Bonifacio, Elisabetta Caffau, Raymond Carlberg, Patrick Côté, Morgan Fouesneau, Patrick François, Jonay Gonzales Hernandez, Stephen Gwyn, Vanessa Hill, Rodrigo Ibata, Pascale Jablonka, Collin Kielty, Alan McConnachie, Julio Navarro, Ruben Sánchez-Janssen, Federico Sestito, Eline Tolstoy, Kim Venn, Kris Youakim

What is Pristine?

Narrow-band photometric survey centred on the metallicity-sensitive $\mathrm{CaH} \& \mathrm{~K}$ doublet lines
*) 3.6 meters Canadien-France Hawaii Telescope (CFHT) with the wide-field imager Megacam

Now covering more than 2000 deg 2 in the northern hemisphere

First data in 2015

CaH\&K doublet

Starkenburg, Martin et al. (2017)

CaH\&K doublet

Starkenburg, Martin et al. (20|7)

Pristine observations

Starkenburg, Martin et al. (2017)

Pristine observations

Starkenburg, Martin et al. (2017)

Pristine Dwarf Galaxy

Old (> 10 Gyr), metal-poor systems ([Fe/H] <-2.0)

Faint galaxies

Thought to be among the most dark-matter dominated objects
(Hosmological probes (Missing satellites problem ...)
\longrightarrow Perform a detailed study of the faintest satellite of the Milky Way

The case of Sagittarius II

Discovered in PAN-STARRS by Laevens et al. 2015
4. Size of 38 pc , at a distance of 68 kpc
~ 8000 solar luminosities
\longrightarrow Metallicity? Dynamics ?

The case of Sagittarius II

Longeard, Martin et al. (in prep.)

The case of Sagittarius II

Longeard, Martin et al. (in prep.)

The case of Sagittarius II

Longeard, Martin et al. (in prep.)

The case of Sagittarius II

Longeard, Martin et al. (in prep.)

The case of Sagittarius II

Longeard, Martin et al. (in prep.)

Things to bring back home

4. Pristine is a survey that uses a CaHK filter to find metallicities of stars only by photometry

- Find the most metal-poor stars

Very useful to study the faintest satellites of the MW

- Getting rid of the foreground MW contamination
- Identify member stars
- Estimate the chemical properties of a system

Things to bring back home

4. Pristine is a survey that uses a CaHK filter to find metallicities of stars only by photometry

- Find the most metal-poor stars

Very useful to study the faintest satellites of the MW

- Getting rid of the foreground MW contamination
- Identify member stars
- Estimate the chemical properties of a system

Pristine footprint

Ibata et al. (20 1 7)

Pristine footprint

Pristine $15 \mathrm{~A}+16 \mathrm{~A}$
with CFHT/MegaCam

Ibata et al. (20|7)

Pristine footprint

Pristine $15 A+16 A$
 with CFHT/MegaCam
 Observed/planned for $16 B+17 A$

Ibata et al. (20 1 7)

Pristine footprint

$$
\begin{array}{cc}
\text { Pristine 15A+16A } & \text { Observed/planned } \\
\text { with CFHT/MegaCam } & \text { for } 16 \mathrm{~B}+17 \mathrm{~A}
\end{array}
$$

Ibata et al. (20 1 7)

CaH\&K model

Starkenburg, Martin et al. (2017)

Pristine model

Pristine Ca H\&K

Starkenburg, Martin et al. (2017)

Preliminary spectroscopic results

Survey	$[\mathbf{F e} / \mathbf{H}]<\mathbf{- 3}$	$[\mathbf{F e} / \mathbf{H}]<\mathbf{- 2 . 5}$	
	$[\mathrm{Fe} / \mathrm{H}]<-\mathbf{2}$		
Pristine	22%	70%	81%
HES	3.8%	22%	40%
SC14	3.8%	-	32%

The case of Draco II

Longeard, Martin et al. (in prep.)

